Optimization of Dualistic Reservoir System Two-Dimensional Rule Curve with Three Allocation Rules
Abstract
Doi: 10.28991/CEJ-2024-010-02-04
Full Text: PDF
Keywords
References
Othman, L., & Ibrahim, D. H. (2017). Simulation-Optimization Model for Dokan Reservoir System Operation. Sulaimani Journal for Engineering Sciences, 4(5), 27–46. doi:10.17656/sjes.10053.
S.K, T., S. M, A., & H.M, H. (2015). Reservoir Operation by Artificial Neural Network Model (Mosul Dam –Iraq, as a Case Study). Engineering and Technology Journal, 33(7A), 1697–1714. doi:10.30684/etj.2015.106873.
Al-Aqeeli, Y. H., Lee, T. S., & Abd Aziz, S. (2016). Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq. Springer Plus, 5(1), 797. doi:10.1186/s40064-016-2372-5.
Karakoyun, E., & Kaya, N. (2022). Modeling Streamflow and Sediment Yield with Determination of Soil Erosion Prone Areas by Using the SWAT Model. Researchsquare, 1-41. doi:10.21203/rs.3.rs-1338298/v1.
Chiamsathit, C., Adeloye, A. J., & Soudharajan, B. (2014). Genetic algorithms optimization of hedging rules for operation of the multi-purpose Ubonratana Reservoir in Thailand. Proceedings of the International Association of Hydrological Sciences, 364, 507–512. doi:10.5194/piahs-364-507-2014.
Draper, A. J., & Lund, J. R. (2004). Optimal Hedging and Carryover Storage Value. Journal of Water Resources Planning and Management, 130(1), 83–87. doi:10.1061/(asce)0733-9496(2004)130:1(83).
You, J. Y., & Cai, X. (2008). Hedging Rule for Reservoir Operations: 2. A numerical model. Water Resources Research, 44, W01416, 1-11. doi:10.1029/2006WR005482.
You, J. Y., & Cai, X. (2008). Hedging Rule for Reservoir Operations: 1. A theoretical analysis. Water Resources Research, 44, W01415, 1-9. doi:10.1029/2006WR005481.
Tu, M.-Y., Hsu, N.-S., & Yeh, W. W.-G. (2003). Optimization of Reservoir Management and Operation with Hedging Rules. Journal of Water Resources Planning and Management, 129(2), 86–97. doi:10.1061/(asce)0733-9496(2003)129:2(86).
Tu, M.-Y., Hsu, N.-S., Tsai, F. T.-C., & Yeh, W. W.-G. (2008). Optimization of Hedging Rules for Reservoir Operations. Journal of Water Resources Planning and Management, 134(1), 3–13. doi:10.1061/(asce)0733-9496(2008)134:1(3).
Chang, L. C., Chang, F. J., Wang, K. W., & Dai, S. Y. (2010). Constrained genetic algorithms for optimizing multi-use reservoir operation. Journal of Hydrology, 390(1–2), 66–74. doi:10.1016/j.jhydrol.2010.06.031.
Taghian, M., Rosbjerg, D., Haghighi, A., & Madsen, H. (2014). Optimization of Conventional Rule Curves Coupled with Hedging Rules for Reservoir Operation. Journal of Water Resources Planning and Management, 140(5), 693–698. doi:10.1061/(asce)wr.1943-5452.0000355.
El Harraki, W., Ouazar, D., Bouziane, A., & Hasnaoui, D. (2021). Optimization of reservoir operating curves and hedging rules using genetic algorithm with a new objective function and smoothing constraint: application to a multipurpose dam in Morocco. Environmental Monitoring and Assessment, 193(4), 196. doi:10.1007/s10661-021-08972-9.
Guo, X., Hu, T., Wu, C., Zhang, T., & Lv, Y. (2013). Multi-Objective Optimization of the Proposed Multi-Reservoir Operating Policy Using Improved NSPSO. Water Resources Management, 27(7), 2137–2153. doi:10.1007/s11269-013-0280-9.
Ahmadianfar, I., Adib, A., & Taghian, M. (2016). Optimization of Fuzzified Hedging Rules for Multipurpose and Multireservoir Systems. Journal of Hydrologic Engineering, 21(4), 05016003. doi:10.1061/(asce)he.1943-5584.0001329.
Kang, S., Kang, T., & Lee, S. (2014). Application of the SCE-UA to Derive Zone Boundaries of a Zone Based Operation Rule for a Dam. Journal of Korea Water Resources Association, 47(10), 921–934. doi:10.3741/jkwra.2014.47.10.921.
Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3–4), 265–284. doi:10.1016/0022-1694(94)90057-4.
Arsenault, R., Poulin, A., Côté, P., & Brissette, F. (2014). Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration. Journal of Hydrologic Engineering, 19(7), 1374–1384. doi:10.1061/(asce)he.1943-5584.0000938.
Jiang, C., Zhang, S., & Xie, Y. (2023). Constrained shuffled complex evolution algorithm and its application in the automatic calibration of Xinanjiang model. Frontiers in Earth Science, 10. doi:10.3389/feart.2022.1037173.
Chang, L. C., & Chang, F. J. (2009). Multi-objective evolutionary algorithm for operating parallel reservoir system. Journal of Hydrology, 377(1–2), 12–20. doi:10.1016/j.jhydrol.2009.07.061.
Wang, L. K., Yang, C. T., & Sung, W. M. H. (2016). Advances in Water Resources Management. Springer, Cham, Switzerland. doi:10.1007/978-3-319-22924-9.
Tan, Q. feng, Wang, X., Wang, H., Wang, C., Lei, X. hui, Xiong, Y. song, & Zhang, W. (2017). Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system. Journal of Hydrology, 551, 253–264. doi:10.1016/j.jhydrol.2017.06.009.
Meng, W., Wan, W., Zhao, J., & Wang, Z. (2022). Optimal Operation Rules for Parallel Reservoir Systems with Distributed Water Demands. Journal of Water Resources Planning and Management, 148(6), 04022020. doi:10.1061/(asce)wr.1943-5452.0001537.
Wei, C., Ge, H., Cheng, J., & Zhang, S. (2023). Optimal allocation model and method for parallel ‘reservoir and pumping station’ irrigation system under insufficient irrigation conditions. Applied Water Science, 13(10), 199. doi:10.1007/s13201-023-02006-0.
Xu, Z., Gong, Z., Cheng, H., & Cheng, J. (2023). Optimal water allocation integrated with water supply, replenishment, and spill in the in-series reservoir based on an improved decomposition and dynamic programming aggregation method. Journal of Hydroinformatics, 25(3), 989–1003. doi:10.2166/hydro.2023.208.
Khalaf, N., Shareef, T., & Al-Mukhtar, M. (2023). Derivation of Optimal Two Dimensional Rule Curve for Dualistic Reservoir Water-Supply System. Civil Engineering Journal (Iran), 9(7), 1779–1794. doi:10.28991/CEJ-2023-09-07-016.
Al-Dabbagh, Z., & Almohseen, K. (2021). Appropriate Operating Policy for a Reservoir System Based on Inflow States (Mosul Reservoir as a Case Study). Al-Rafidain Engineering Journal (AREJ), 26(2), 259–266. doi:10.33899/rengj.2021.130561.1111.
Saab, S. M., Othman, F., Tan, C. G., Allawi, M. F., Sherif, M., & El-Shafie, A. (2022). Utilizing deep learning machine for inflow forecasting in two different environment regions: a case study of a tropical and semi-arid region. Applied Water Science, 12(12). doi:10.1007/s13201-022-01798-x.
Holman, K. D., Gronewold, A., Notaro, M., & Zarrin, A. (2012). Improving historical precipitation estimates over the Lake Superior basin. Geophysical Research Letters, 39(3). doi:10.1029/2011GL050468.
Fang, H. B., Hu, T. S., Zeng, X., & Wu, F. Y. (2014). Simulation-optimization model of reservoir operation based on target storage curves. Water Science and Engineering, 7(4), 433-445. doi:10.3882/j.issn.1674-2370.2014.04.008.
Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. doi:10.1029/WR018i001p00014.
Ministry of Water Resources. (2023). General Directorate of Dams and Reservoirs, Baghdad, Iraq.
Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. doi:10.1029/91WR02985.
Duan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501–521. doi:10.1007/BF00939380.
DOI: 10.28991/CEJ-2024-010-02-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nasser Khalaf Muhaisin
This work is licensed under a Creative Commons Attribution 4.0 International License.