Lateral Displacement Behavior of IBS Precast Concrete Elements Reinforced with Dual System

Mohammed Yahya Mohammed Al-Fasih, Walid F. Edris, Samy Elbialy, Abdul Kadir Marsono, Abd Al-Kader A. Al Sayed

Abstract


Throughout history, the construction industry has been a significant contributor to construction waste, presenting an ongoing challenge in efficiently managing this waste to mitigate environmental pollution. The Industrialized Building System (IBS) stands out as a construction approach that utilizes prefabricated components made from various waste materials, implemented with machinery and formwork, leading to minimal waste production. The potential failure of IBS blockwork columns under lateral loads is a significant concern, and the deformation of these columns is crucial in assessing overall structural performance against lateral forces. This study focuses on examining the deformation and flexibility of components in IBS blockwork columns when subjected to lateral loads. Using Finite Element Modeling (FEM), a 1:5 scale prototype model of the dual-reinforced system IBS Block Work Column is analyzed. The IBS Block Work Column, comprising four prefabricated components assembled in the form of a crucifix plan to enhance lateral stability, is subjected to FEM analysis and experimental investigations. The study aims to explore the impact of four different shapes of reinforcement on deformation resistance. The findings suggest that employing a dual-reinforced system in the IBS Block Work Column enhances its resistance to lateral loads compared to a column with conventional reinforcement. Moreover, the assembled IBS Block Work Column exhibits greater stiffness than a single prefabricated component when subjected to lateral loads.

 

Doi: 10.28991/CEJ-2024-010-01-020

Full Text: PDF


Keywords


Industrialized Building System; Block Work Column; Conventional Reinforcement; Finite Element Modeling.

References


Abbood, A. W., Al-Obaidi, K. M., Awang, H., & Abdul Rahman, A. M. (2015). Achieving energy efficiency through industrialized building system for residential buildings in Iraq. International Journal of Sustainable Built Environment, 4(1), 78–90. doi:10.1016/j.ijsbe.2015.02.002.

Lee, S. C., & Ma, C. K. (2021). Time history shaking table test and seismic performance analysis of Industrialized Building System (IBS) block house subsystems. Journal of Building Engineering, 34, 101906. doi:10.1016/j.jobe.2020.101906.

Lachimpadi, S. K., Pereira, J. J., Taha, M. R., & Mokhtar, M. (2012). Construction waste minimization comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study. Resources, Conservation and Recycling, 68, 96–103. doi:10.1016/j.resconrec.2012.08.011.

Kamar, A. M., Abd Hamid, Z., & Azman, N. A. (2011). Industrialized Building System (IBS): Revisiting issues of definition and classification. International Journal of Emerging Sciences, 1(2), 120.

Ghayoumian, G., & Emami, A. R. (2020). A multi-direction pushover procedure for seismic response assessment of low-to-medium-rise modern reinforced concrete buildings with special dual system having torsional irregularity. Structures, 28(August), 1077–1107. doi:10.1016/j.istruc.2020.09.031.

Mokhtar, R., Ibrahim, Z., Jumaat, M. Z., Abd. Hamid, Z., & Abdul Rahim, A. H. (2020). Behaviour of semi-rigid precast beam-to-column connection determined using static and reversible load tests. Measurement: Journal of the International Measurement Confederation, 164, 108007. doi:10.1016/j.measurement.2020.108007.

Wang, G., Li, Y., Zheng, N., & Ingham, J. M. (2017). Testing and modelling the in-plane seismic response of clay brick masonry walls with boundary columns made of precast concrete interlocking blocks. Engineering Structures, 131, 513–529. doi:10.1016/j.engstruct.2016.10.035.

Azman, M. N. A., S. Ahamad, M. S., A.Majid, T., & Hanafi, M. H. (2011). Status of Industrialized Building System Manufacturing Plant in Malaysia. Journal of Civil Engineering, Science and Technology, 2(2), 8–16. doi:10.33736/jcest.89.2011.

Wang, T., Wang, X., Wang, L., Au-Yong, C. P., & Ali, A. S. (2021). Assessment of the development level of regional industrialized building based on cloud model: A case study in Guangzhou, China. Journal of Building Engineering, 44, 102547. doi:10.1016/j.jobe.2021.102547.

Bester, F., van den Heever, M., Kruger, J., & van Zijl, G. (2021). Reinforcing digitally fabricated concrete: A systems approach review. Additive Manufacturing, 37, 101737. doi:10.1016/j.addma.2020.101737.

Esmaeili, J., & Ahooghalandary, N. (2020). Introducing an easy-install precast concrete beam-to-column connection strengthened by steel box and peripheral plates. Engineering Structures, 205, 110006. doi:10.1016/j.engstruct.2019.110006.

Gonzalez, A., Spacone, E., & Nascimbene, R. (2017). Performance-based seismic design framework for RC floor diaphragms in dual systems. Procedia Engineering, 199, 3546–3551. doi:10.1016/j.proeng.2017.09.512.

Gondal, M. A., Dastageer, A., Maslehuddin, M., Alnehmi, A. J., & Al-Amoudi, O. S. B. (2012). Detection of sulfur in the reinforced concrete structures using a dual pulsed LIBS system. Optics and Laser Technology, 44(3), 566–571. doi:10.1016/j.optlastec.2011.09.001.

Musa, M. F., Mohammad, M. F., Mahbub, R., & Yusof, M. R. (2014). Enhancing the Quality of Life by Adopting Sustainable Modular Industrialised Building System (IBS) in the Malaysian Construction Industry. Procedia - Social and Behavioral Sciences, 153, 79–89. doi:10.1016/j.sbspro.2014.10.043.

Phiri, C. K., Njira, K., & Chitedze, G. (2023). An insight of chickpea production potential, utilization and their challenges among smallholder farmers in Malawi – A review. Journal of Agriculture and Food Research, 14, 100713. doi:10.1016/j.jafr.2023.100713.

Hasan, M., Qasem, M., & Muhamad, R. (2023). Finite element modeling of precast reinforced concrete wall with dual boundary elements under lateral load. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.688.

Norrell, T., Ferguson, G., Ansell, T., Saladin, T., Nardi, A., & Nieto, A. (2020). Synthesis and corrosion behavior of cold sprayed dual nanoparticle reinforced Al coatings. Surface and Coatings Technology, 401(August), 126280. doi:10.1016/j.surfcoat.2020.126280.

Mohsen Alawag, A., Salah Alaloul, W., Liew, M. S., Ali Musarat, M., Baarimah, A. O., Saad, S., & Ammad, S. (2023). Critical Success Factors Influencing Total Quality Management in Industrialised Building System: A Case of Malaysian Construction Industry. Ain Shams Engineering Journal, 14(2), 101877. doi:10.1016/j.asej.2022.101877.

Ghayeb, H. H., Razak, H. A., & Sulong, N. R. (2020). Seismic performance of innovative hybrid precast reinforced concrete beam-to-column connections. Engineering Structures, 202, 109886. doi:10.1016/j.engstruct.2019.109886.

Al-Aidrous, A. hussein M. H., Shafiq, N., Rahmawati, Y., Mohammed, B. S., Al-Ashmori, Y. Y., Baarimah, A. O., & Alawag, A. M. (2023). Major blocking factors affecting the application of industrialized building system. Ain Shams Engineering Journal, 14(10), 102151. doi:10.1016/j.asej.2023.102151.

Marsono, A. K., Ying, W. J., Tap, M. M., Chieh, Y. C., & Haddadi, A. (2015). Standard Verification Test for Industrialised Building System (IBS) Repetitive Manufacturing. Procedia CIRP, 26, 252–257. doi:10.1016/j.procir.2014.07.047.

Halil, F. M., Mohammed, M. F., Mahbub, R., & Shukur, A. S. (2016). Trust Attributes to Supply Chain Partnering in Industrialised Building System. Procedia - Social and Behavioral Sciences, 222, 46–55. doi:10.1016/j.sbspro.2016.05.174.

Ghayeb, H. H., Razak, H. A., & Sulong, N. H. R. (2017). Development and testing of hybrid precast concrete beam-to-column connections under cyclic loading. Construction and Building Materials, 151, 258–278. doi:10.1016/j.conbuildmat.2017.06.073.

Rao, G. A., & Poluraju, P. (2020). Cyclic behaviour of precast reinforced concrete sandwich slender walls. Structures, 28(July), 80–92. doi:10.1016/j.istruc.2020.08.046.

Liew, J. Y. R., Chua, Y. S., & Dai, Z. (2019). Steel concrete composite systems for modular construction of high-rise buildings. Structures, 21(ASCCS), 135–149. doi:10.1016/j.istruc.2019.02.010.

Tiong, P. L. Y., Chiew, S. P., & Teow, B. H. (2016). Case study of load-bearing precast wall system subject to low seismic intensity by linear and nonlinear analyses. Case Studies in Structural Engineering, 6, 11–21. doi:10.1016/j.csse.2016.05.001.

Sánchez-Garrido, A. J., Navarro, I. J., García, J., & Yepes, V. (2023). A systematic literature review on modern methods of construction in building: An integrated approach using machine learning. Journal of Building Engineering, 73, 106725. doi:10.1016/j.jobe.2023.106725.

Baghdadi, A., Heristchian, M., Ledderose, L., & Kloft, H. (2020). Experimental and numerical assessment of new precast concrete connections under bending loads. Engineering Structures, 212, 110456. doi:10.1016/j.engstruct.2020.110456.

He, R., Li, M., Gan, V. J. L., & Ma, J. (2021). BIM-enabled computerized design and digital fabrication of industrialized buildings: A case study. Journal of Cleaner Production, 278, 123505. doi:10.1016/j.jclepro.2020.123505.

Rubio-Romero, J. C., Suárez-Cebador, M., & Abad, J. (2014). Modeling injury rates as a function of industrialized versus on-site construction techniques. Accident Analysis and Prevention, 66, 8–14. doi:10.1016/j.aap.2014.01.005.

Megally, S., Seible, F., Garg, M., & Dowell, R. K. (2002). Seismic performance of precast segmental bridge superstructures with internally bonded prestressing tendons. PCI Journal, 47(2), 40–56. doi:10.15554/pcij.03012002.40.56.

Fang, L., Zhang, B., Jin, G. F., Li, K. W., & Wang, Z. L. (2015). Seismic behavior of concrete-encased steel cross-shaped columns. Journal of Constructional Steel Research, 109, 24–33. doi:10.1016/j.jcsr.2015.03.001.

Al Agha, W., & Umamaheswari, N. (2020). Analytical study of irregular reinforced concrete building with shear wall and dual Framed-Shear wall system by using Equivalent Static and Response Spectrum Method. Materials Today: Proceedings, 43, 2232–2241. doi:10.1016/j.matpr.2020.12.525.

Ralkhal, S., Ramezanzadeh, B., & Shahrabi, T. (2019). Studying dual active/barrier and self-healing reinforcing effects of the Neodymium (III)-Benzimidazole hybrid complex in the epoxy coating/mild steel system. Journal of Alloys and Compounds, 790, 141–155. doi:10.1016/j.jallcom.2019.03.170.

Kim, S., Hong, W. K., Kim, J. H., & Kim, J. T. (2013). The development of modularized construction of enhanced precast composite structural systems (Smart Green Frame) and its embedded energy efficiency. Energy and Buildings, 66, 16–21. doi:10.1016/j.enbuild.2013.07.023.

LISA. (2013). Tutorials and Reference Guide LISA Finite Element Analysis, Software Version 8.0.0. Available online: https://www.lisafea.com/index.html (accessed on December 2023).

Alirahmi, S. M., Perrucci, A., Maschietti, M., Qi, M., Gençer, E., Sin, G., & Yu, H. (2023). Renewable-integrated flexible production of energy and methane via re-using existing offshore oil and gas infrastructure. Journal of Cleaner Production, 426, 139125. doi:10.1016/j.jclepro.2023.139125.

Navarro-Rubio, J., Pineda, P., & García-Martínez, A. (2019). Sustainability, prefabrication and building optimization under different durability and re-using scenarios: Potential of dry precast structural connections. Sustainable Cities and Society, 44, 614–628. doi:10.1016/j.scs.2018.10.045.

Abed, M., Nemes, R., & Tayeh, B. A. (2020). Properties of self-compacting high-strength concrete containing multiple use of recycled aggregate. Journal of King Saud University - Engineering Sciences, 32(2), 108–114. doi:10.1016/j.jksues.2018.12.002.

Beatriz da Silva, J., Pepe, M., & Toledo Filho, R. D. (2020). High temperatures effect on mechanical and physical performance of normal and high strength recycled aggregate concrete. Fire Safety Journal, 117(September), 103222. doi:10.1016/j.firesaf.2020.103222.

Khademi, M., Tehranizadeh, M., & Shirkhani, A. (2023). Case studies on the seismic resilience of reinforced concrete shear wall buildings and steel dual concentrically braced buildings. Structures, 58, 105596. doi:10.1016/j.istruc.2023.105596.

ASTM C39/C39M-21. (2023). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.

ASTM C33/C33M-13. (2016). Standard Specification for Concrete Aggregates, ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-13.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-01-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mohammed Yahya M. Al-Fasih, Walid Fouad Edris, Samy Elbialy, Abdul Kadir Marsono, Abd Al-Kader A Al Sayed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message