Numerical Analysis of Time-Dependent Strength and Stiffness in Palm Oil Fuel Ash-Stabilized Soil: Early and Long-Term Effects
Downloads
Doi: 10.28991/CEJ-SP2024-010-05
Full Text: PDF
Downloads
[2] Sabetamal, H., Sheng, D., Carter, J. (2021). Advanced Soil Constitutive Models and Their Applications to Offshore Geotechnical Problems. Challenges and Innovations in Geomechanics, IACMAG 2021, Lecture Notes in Civil Engineering, 126, Springer, Cham, Switzerland. doi:10.1007/978-3-030-64518-2_116.
[3] Onyelowe, K. C., Ebid, A. M., Ramani Sujatha, E., Fazel-Mojtahedi, F., Golaghaei-Darzi, A., Kontoni, D. P. N., & Nooralddin-Othman, N. (2023). Extensive overview of soil constitutive relations and applications for geotechnical engineering problems. Heliyon, 9(3), e14465. doi:10.1016/j.heliyon.2023.e14465.
[4] Karim, M. R., & Gnanendran, C. T. (2014). Review of constitutive models for describing the time dependent behavior of soft clays. Geomechanics and Geoengineering, 9(1), 36–51. doi:10.1080/17486025.2013.804212.
[5] Karstunen, M., & Yin, Z. Y. (2010). Modelling time-dependent behavior of Murro test embankment. Geotechnique, 60(10), 735–749. doi:10.1680/geot.8.P.027.
[6] Baskari, T. L., Zakaria, Z., Sulaksana, N., & Muljana, B. (2021). Study On Rheological Constitutive Model Of Cililin Volcanic Clay, Indonesia In Relation To Long-Term Slope Stability. International Journal of GEOMATE, 21(86), 40–47. doi:10.21660/2021.86.j2269.
[7] Teshager, D. K., & Belayneh, H. L. (2022). Reviews on Finite Element Modeling Practices of Stone Columns for Soft Soil Stabilization Beneath an Embankment Dam. Studia Geotechnica et Mechanica, 44(4), 343–353. doi:10.2478/sgem-2022-0024.
[8] Sternik, K. (2017). Elasto-plastic Constitutive Model for Overconsolidated Clays. International Journal of Civil Engineering, 15(3), 431–440. doi:10.1007/s40999-017-0193-8.
[9] Mohammed, A. S., & Vipulanandan, C. (2014). Compressive and Tensile Behavior of Polymer Treated Sulfate Contaminated CL Soil. Geotechnical and Geological Engineering, 32(1), 71–83. doi:10.1007/s10706-013-9692-9.
[10] Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.
[11] Jiang, Y., Han, J., & Zheng, G. (2013). Numerical analysis of consolidation of soft soils fully-penetrated by deep-mixed columns. KSCE Journal of Civil Engineering, 17(1), 96–105. doi:10.1007/s12205-013-1641-x.
[12] Tsige, D., Korita, M., & Beyene, A. (2022). Deformation analysis of cement modified soft clay soil using finite element method (FEM). Heliyon, 8(6), e09613. doi:10.1016/j.heliyon.2022.e09613.
[13] Abdullah, G. M. S., & El Aal, A. A. (2021). Assessment of the reuse of Covid-19 healthy personal protective materials in enhancing geotechnical properties of Najran's soil for road construction: Numerical and experimental study. Journal of Cleaner Production, 320, 128772 . doi:10.1016/j.jclepro.2021.128772.
[14] Jassim, N. W., Hassan, H. A., Mohammed, H. A., & Fattah, M. Y. (2022). Utilization of waste marble powder as sustainable stabilization materials for subgrade layer. Results in Engineering, 14, 100436. doi:10.1016/j.rineng.2022.100436.
[15] Negesa, A. B., Gebretsadik, H. M., & Miju, R. B. (2023). Deformation Response of Sensitive Clay Reinforced with Recycled High-Density Polyethylene Plastic Polymer Chips: Experimental and Numerical Analysis, 1-19. doi:10.2139/ssrn.4340001.
[16] Adithan, K., Neethi Chandra, A., Reddy, T. L. G., Vaishnao Vignesh, G., Sharma, A., & Ramkrishnan, R. (2021). Numerical Analysis of Soil Reinforcement using Geocell infilled with Quarry Dust Powder. Journal of Physics: Conference Series, 2070(1), 012189. doi:10.1088/1742-6596/2070/1/012189.
[17] Robin, V., Cuisinier, O., Masrouri, F., & Javadi, A. A. (2014). Chemo-mechanical modelling of lime treated soils. Applied Clay Science, 95, 211–219. doi:10.1016/j.clay.2014.04.015.
[18] Nguyen, L., Fatahi, B., & Khabbaz, H. (2016). Predicting the Behavior of Fibre Reinforced Cement Treated Clay. Procedia Engineering, 143, 153–160. doi:10.1016/j.proeng.2016.06.020.
[19] Abdullah, G. M. S. (2019). 3D finite element modeling to predict the foamed sulfur asphalt marl soil mixes rutting behavior. Ain Shams Engineering Journal, 10(4), 661–668. doi:10.1016/j.asej.2019.03.005.
[20] Li, X. (2014). Shrinkage cracking of soils and cementitiously-stabilized soils: Mechanisms and modeling. Ph.D. Thesis, Washington State University, Washington, United States.
[21] Mahvash-mohammadi, S. (2017). The Utilization of Fly Ash for Ground Improvement. Ph.D. Thesis, University of West London, London, United Kingdom.
[22] Shaalan, H. H., Azit, R., & Mohamad Ismail, M. A. (2018). Numerical Analysis of TBM Tunnel Lining Behavior using Shotcrete Constitutive Model. Civil Engineering Journal, 4(5), 1046. doi:10.28991/cej-0309155.
[23] Schütz, R., Potts, D. M., & Zdravkovic, L. (2011). Advanced constitutive modelling of shotcrete: Model formulation and calibration. Computers and Geotechnics, 38(6), 834–845. doi:10.1016/j.compgeo.2011.05.006.
[24] Paternesi, A., Schweiger, H. F., Ruggeri, P., Fruzzetti, V. M. E., & Scarpelli, G. (2017). Comparisons of Eurocodes design approaches for numerical analysis of shallow tunnels. Tunnelling and Underground Space Technology, 62, 115–125. doi:10.1016/j.tust.2016.12.003.
[25] Waichita, S., Jongpradist, P., & Schweiger, H. F. (2020). Numerical and experimental investigation of failure of a DCM-wall considering softening behavior. Computers and Geotechnics, 119, 103380. doi:10.1016/j.compgeo.2019.103380.
[26] Ong, Q.J. & Tan, S.A. (2019). Collapse of an excavation utilizing cement-treated soil columns and lessons learnt. 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (16th ARC), Taipei, Taiwan.
[27] Hung, H.M., Cheang, W., Long, P.D., Tuan, N.A. (2020). Simulation of Cement-Treated Soils Considering Softening Behavior. Geotechnics for Sustainable Infrastructure Development, Lecture Notes in Civil Engineering, 62, Springer, Singapore. doi:10.1007/978-981-15-2184-3_134.
[28] Maatkamp, T. W. P. (2016). The capabilities of the Plaxis Shotcrete material model for designing laterally loaded reinforced concrete structures in the subsurface. Master Thesis, Delft University of Technology, Delft, Netherlands.
[29] Çelik, S., Majedi, P., & Akbulut, S. (2019). Granular Soil Improvement by Using Polyester Grouts. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 43(3), 599–606. doi:10.1007/s40996-018-0203-3.
[30] Zheng, X., & Wu, J. (2021). Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer. Frontiers in Materials, 8. doi:10.3389/fmats.2021.616430.
[31] Ratchakrom, C. (2019). The effect of bottom ash and kaolin on the strength of poor subbase. International Journal of GEOMATE, 16(57), 76–81. doi:10.21660/2019.57.4665.
[32] Yang, Y., Ruan, S., Wu, S., Chu, J., Unluer, C., Liu, H., & Cheng, L. (2021). Biocarbonation of reactive magnesia for soil improvement. Acta Geotechnica, 16(4), 1113–1125. doi:10.1007/s11440-020-01093-6.
[33] Soltani, A., Tarighat, A., & Varmazyari, M. (2018). Calcined Marl and Condensed Silica Fume as Partial Replacement for Ordinary Portland Cement. International Journal of Civil Engineering, 16(11), 1549–1559. doi:10.1007/s40999-018-0289-9.
[34] Ezreig, A. M. A., Ismail, M. A. M., & Ehwailat, K. I. A. (2022). A state of review: challenges and techniques of laterite soil stabilisation using chemical, economical, and eco-friendly materials. Innovative Infrastructure Solutions, 7(3), 229. doi:10.1007/s41062-022-00821-z.
[35] Gorde, P., Bendale, D., Sawkar, N., Dhonddev, S., Kanade, S., & Bhoye, D. (2024). Review on Fibres Used in Bituminous Pavement and Their Behaviors. EasyChair Preprint 11740, Manchester, United Kingdom.
[36] Fawaz, A., Alhakim, G., & Jaber, L. (2024). The stabilisation of clayey soil by using sawdust and sawdust ash. Environmental Technology, 1–11. doi:10.1080/09593330.2024.2304674.
[37] Atiqah Abdul Azam, F., Bt Che Omar, R., Bte Roslan, R., Baharudin, I. N. Z., & Muchlas, N. H. M. (2024). Enhancing the soil stability using biological and plastic waste materials integrated sustainable technique. Alexandria Engineering Journal, 91, 321–333. doi:10.1016/j.aej.2024.02.016.
[38] Mahmood, A. A., Hussain, M. K., & Ali Mohamad, S. N. (2020). Use of palm oil fuel ash (POFA)-stabilized Sarawak peat composite for road subbase. Materials Today: Proceedings, 20, 505–511. doi:10.1016/j.matpr.2019.09.178.
[39] Abdeldjouad, L., Asadi, A., Nahazanan, H., Huat, B. B. K., Dheyab, W., & Elkhebu, A. G. (2019). Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering, 5(1), 4. doi:10.1007/s40891-019-0157-y.
[40] Sukmak, P., Sukmak, G., Horpibulsuk, S., Setkit, M., Kassawat, S., & Arulrajah, A. (2019). Palm oil fuel ash-soft soil geopolymer for subgrade applications: strength and microstructural evaluation. Road Materials and Pavement Design, 20(1), 110–131. doi:10.1080/14680629.2017.1375967.
[41] Ezreig, A. M. A., Mohamad Ismail, M. A., & Azarroug Ehwailat, K. I. (2023). Geotechnical performance of tropical laterite soil using palm oil fuel ash and activator magnesium oxide stabilizer. Physics and Chemistry of the Earth, Parts A/B/C, 129, 103293. doi:10.1016/j.pce.2022.103293.
[42] ISO 17892-4:2016. (2016). Standards Publication Geotechnical Investigation and Testing”Laboratory Testing of Soil Part 4: Determination of Particle Size. International Organization for Standardization (ISO), Geneva, Switzerland.
[43] Bozkurt, S., Abed, A., & Karstunen, M. (2023). Finite element analysis for a deep excavation in soft clay supported by lime-cement columns. Computers and Geotechnics, 162, 105687. doi:10.1016/j.compgeo.2023.105687.
[44] Fattah, M. Y., Ismael, R. H., & Aswad, M. F. (2021). Dispersion characteristics of MgO-treated dispersive clay. Arabian Journal of Geosciences, 14(7), 605. doi:10.1007/s12517-021-06957-z.
[45] Saadeldin, R., & Siddiqua, S. (2013). Geotechnical characterization of a clay-cement mix. Bulletin of Engineering Geology and the Environment, 72(3–4), 601–608. doi:10.1007/s10064-013-0531-2.
[46] Mohammed Al-Bared, M. A., & Marto, A. (2017). A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements. Malaysian Journal of Fundamental and Applied Sciences, 13(4), 825–831. doi:10.11113/mjfas.v13n4.921.
[47] Khasib, I. A., Daud, N. N. N., & Nasir, N. A. M. (2021). Strength development and microstructural behavior of soils stabilized with palm oil fuel ash (POFA)-based geopolymer. Applied Sciences, 11(8), 3572. doi:10.3390/app11083572.
[48] Zhou, Y., Wang, Y., Yu, K., Feng, S., Zhang, H., & Zhao, J. (2023). Synergistic flame retardancy of piperazine pyrophosphate/magnesium hydroxide/fly ash cenospheres-doped rigid polyurethane foams. Construction and Building Materials, 408, 133670. doi:10.1016/j.conbuildmat.2023.133670.
[49] ASTM D2166/D2166M-16. (2013). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166_D2166M-16.
[50] Jiang, N., Wang, C., Wang, Z., Li, B., & Liu, Y. A. (2021). Strength characteristics and microstructure of cement stabilized soft soil admixed with silica fume. Materials, 14(8), 1929. doi:10.3390/ma14081929.
[51] Haeri, S. M., & Valishzadeh, A. (2021). Evaluation of Using Different Nanomaterials to Stabilize the Collapsible Loessial Soil. International Journal of Civil Engineering, 19(5), 583–594. doi:10.1007/s40999-020-00583-8.
[52] Saadat, M., & Bayat, M. (2022). Prediction of the unconfined compressive strength of stabilized soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering, 17(1), 80–91. doi:10.1080/17486025.2019.1699668.
[53] Wang, Y., Zhao, Y., Han, Y., & Zhou, M. (2022). The effect of circulating fluidised bed bottom ash content on the mechanical properties and drying shrinkage of cement-stabilized soil. Materials, 15(1), 14. doi:10.3390/ma15010014.
[54] Bayat, M., Asgari, M. R., & Mousivand, M. (2013). Effects of cement and lime treatment on geotechnical properties of a low plasticity clay. International Conference on Civil Engineering Architecture & Urban Sustainable Development, 27-28 November, Tabriz, Iran.
[55] Elmannaey, A. S., Fouad, H. E. E., & Youssef, Y. G. (2021). Improvement of swelling chlorite soil using sodium silicate alkali activator. Ain Shams Engineering Journal, 12(2), 1535–1544. doi:10.1016/j.asej.2020.10.019.
[56] Kim, A. R., Chang, I., Cho, G. C., & Shim, S. H. (2018). Strength and Dynamic Properties of Cement-Mixed Korean Marine Clays. KSCE Journal of Civil Engineering, 22(4), 1150–1161. doi:10.1007/s12205-017-1686-3.
[57] Gudissa Lemu, D., & Verma, R. K. (2018). Compacted Behavior of Cement Stabilized Lateritic Soil And Its Economic Benefit Over Selective Borrow Material In Road Construction: A Case Study In Wolayita Sodo. World Journal of Engineering Research and Technology WJERT, 4(2), 1-34.
[58] Saing, Z., Samang, L., Harianto, T., & Patanduk, J. (2017). Mechanical characteristic of ferro laterite soil with cement stabilization as a subgrade material. International Journal of Civil Engineering and Technology, 8(3), 609–616.
[59] Yusuf, H., Pallu, M. H., Samang, L., & Tjaronge, M. W. (2012). Characteristical analysis of unconfined compressive strength and CBR laboratory on dredging sediment stabilized with Portland cement. International Journal of Civil & Environmental Engineering, 12(04), 25-31.
[60] Pongsivasathit, S., Horpibulsuk, S., & Piyaphipat, S. (2019). Assessment of mechanical properties of cement stabilized soils. In Case Studies in Construction Materials, 11, e00301. doi:10.1016/j.cscm.2019.e00301.
[61] Wahab, N. A., Roshan, M. J., Rashid, A. S. A., Hezmi, M. A., Jusoh, S. N., Norsyahariati, N. D. N., & Tamassoki, S. (2021). Strength and durability of cement-treated lateritic soil. Sustainability, 13(11), 6430. doi:10.3390/su13116430.
[62] Eyo, E. U. (2020). Performance of expansive soils stabilized by cementitious binders and inclusion of a nanotechnology-based additive Ph.D. Thesis, Coventry University, Coventry, United Kingdom.
[63] Yong, L. L., Perera, S. V. A. D. N. J., Syamsir, A., Emmanuel, E., Paul, S. C., & Anggraini, V. (2019). Stabilization of a residual soil using calcium and magnesium hydroxide nanoparticles: A quick precipitation method. Applied Sciences, 9(20), 4325. doi:10.3390/app9204325.
[64] Al-Duais, I. N., Ahmad, S., Al-Osta, M. M., Maslehuddin, M., Saleh, T. A., & Al-Dulaijan, S. U. (2023). Optimization of alkali-activated binders using natural minerals and industrial waste materials as precursor materials. Journal of Building Engineering, 69, 106230. doi:10.1016/j.jobe.2023.106230.
[65] PLAXIS (2018). Plaxis Connect Edition V22.02 PLAXIS 2D-Reference Manual. 2D Geotechnical Engineering Software, Bentley Systems, Pennsylvania, United States.
[66] PLAXIS (2022). Plaxis Material Models Connect Edition V22.01. Bentley Systems, Pennsylvania, United States.
[67] Yu, Y., Damians, I. P., & Bathurst, R. J. (2015). Influence of choice of FLAC and PLAXIS interface models on reinforced soil–structure interactions. Computers and Geotechnics, 65, 164-174. doi:10.1016/j.compgeo.2014.12.009.
[68] Yapage, N. N. S., & Liyanapathirana, D. S. (2019). A review of constitutive models for cement-treated clay. International Journal of Geotechnical Engineering, 13(6), 525–537. doi:10.1080/19386362.2017.1370878.
[69] Vinoth, M., Prasad, P. S., & Guru Vittal, U. K. (2019). Performance analysis of PLAXIS models of stone columns in soft marine clay. Geotechnics for Transportation Infrastructure: Recent Developments, Upcoming Technologies and New Concepts, Volume 2, 557-569. doi:10.1007/978-981-13-6713-7_44.
[70] Yaro, N. S. A., Bin Napiah, M., Sutanto, M. H., Usman, A., & Saeed, S. M. (2021). Performance evaluation of waste palm oil fiber reinforced stone matrix asphalt mixtures using traditional and sequential mixing processes. Case Studies in Construction Materials, 15, e00783. doi:10.1016/j.cscm.2021.e00783.
[71] Jafer, H., Atherton, W., Sadique, M., Ruddock, F., & Loffill, E. (2018). Stabilisation of soft soil using binary blending of high calcium fly ash and palm oil fuel ash. Applied Clay Science, 152, 323-332. doi:10.1016/j.clay.2017.11.030.
[72] Ghiasi, V., & Eskandari, S. (2023). Comparing a single pile's axial bearing capacity using numerical modeling and analytical techniques. Results in Engineering, 17, 100893. doi:10.1016/j.rineng.2023.100893.
[73] Tang, Q., Shi, P., Zhang, Y., Liu, W., & Chen, L. (2019). Strength and Deformation Properties of Fiber and Cement Reinforced Heavy Metal-Contaminated Synthetic Soils. Advances in Materials Science and Engineering, 2019, 1–9. doi:10.1155/2019/5746315.
[74] Ho, T. O., Chen, W. B., Yin, J. H., Wu, P. C., & Tsang, D. C. W. (2021). Stress-Strain behavior of Cement-Stabilized Hong Kong marine deposits. Construction and Building Materials, 274, 122103. doi:10.1016/j.conbuildmat.2020.122103.
[75] Wang, Z., Zhang, W., Jiang, P., & Li, C. (2022). The Elastic Modulus and Damage Stress–Strain Model of Polypropylene Fiber and Nano Clay Modified Lime Treated Soil under Axial Load. Polymers, 14(13), 2606. doi:10.3390/polym14132606.
[76] Miturski, M., GЂuchowski, A., & Sas, W. (2021). Influence of dispersed reinforcement on mechanical properties of stabilized soil. Materials, 14(20), 5982. doi:10.3390/ma14205982.
[77] Jeremiah, J. J., Abbey, S. J., Booth, C. A., & Kashyap, A. (2021). Geopolymers as Alternative Sustainable Binders for Stabilisation of Clays”A Review. Geotechnics, 1(2), 439–459. doi:10.3390/geotechnics1020021.
[78] Mahvash-Mohammadi, S. (2017) The utilization of fly ash for ground improvement: a sustainable construction of embankment. Ph.D. Thesis, University of West London, London, United Kingdom.
[79] Shaalan, H., Mohamad Ismail, M. A., & Azit, R. (2018). Application of shotcrete constitutive model to the time dependent behavior of TBM tunnel lining. International Journal of Engineering & Technology, 7(3), 1826. doi:10.14419/ijet.v7i3.11293.
[80] Shaalan, H., Ismail, M. A. M., & Azit, R. (2016). Time-dependency behavior of steel fiber reinforced shotcrete lining under rock overstressing using shotcrete model. Electronic Journal of Geotechnical Engineering, 21(26), 10365–10378.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.