Studying the Behavior of Expansive Soil Reinforced by Micropiles

Ahmed S. A. Al-Gharbawi, Ahmed M. Najemalden, Mohammed Y. Fattah


Expansive soil is a form of soil that can expand and contract, changing its volume. Montmorillonite, a mineral with the ability to dissolve in water, makes up the majority of these kinds of soils, and by increasing the volume of the soil, it causes the soil to heave. Expansive soils could be a substantial concern for engineered buildings due to their capacity to adjust to seasonal variations by contracting or expanding moisture content. Many researchers focused on soils that were swollen and looked at how they behaved as well as how they could be improved. In this study, the work depends on inserting micro-piles with different depths and configuration widths to investigate which depth and configuration can be obtained to improve the bearing capacity of foundations on expansive soil. The main purpose of this study is to reinforce the expansive soil with micro-piles with different depths (1B, 2B, and 3B) and different configuration widths (under footing only, 1B and 2B). It was concluded that the soil reinforced with micro-piles improved the load-bearing capacity of the expensive soil and decreased the swell pressure. The increasing depth of the micropiles 2B to 3B (B is the width/diameter of the foundation) can increase the bearing capacity by just 6%; therefore, increasing the depth beyond 2B is not beneficial. Also, the increase in width of the configuration of the micro piles from 1B to 2B increases the bearing capacity by just 4%; therefore, the increase in width greater than 1B is not valid.


Doi: 10.28991/CEJ-2024-010-01-017

Full Text: PDF


Expansive Soil; Micro-Piles; Reinforcement; Stabilization.


Coduto, D. P. (2003). Foundation Design on Problematic Soils: Principles and Practices. Prentice-Hall, University of Iowa, Iowa, United States.

Al-Showely, J.A. (2014). Piled Raft Foundations in Expansive Soils. MSc. Thesis, University of Technology, Baghdad, Iraq.

Al-Omari, R. R. O., Fattah, M. Y., & Ali, H. A. (2016). Treatment of soil swelling using geogrid reinforced columns. Italian Journal of Geosciences, 135(1), 83–94. doi:10.3301/IJG.2014.54.

Paranthaman, R., & Azam, S. (2021). Effect of composition on engineering behavior of clay tills. Geosciences (Switzerland), 11(10), 427. doi:10.3390/geosciences11100427.

Das, M. (2004). Shallow Foundations - Bearing Capacity and Settlement, 4th Edition. McGraw-Hill Book Company, London, United Kingdom.

ASTM D4546. (2003). Standard test methods for one-dimensional swell or settlement potential of cohesive soils. ASTM International, Pennsylvania, United States.

Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e01985.

Kumar, S., Sahu, A. K., & Naval, S. (2019). Performance of Circular Footing on Expansive Soil Bed Reinforced with Geocells of Chevron Pattern. Civil Engineering Journal, 5(11), 2333–2348. doi:10.28991/cej-2019-03091415.

Al-Gharbawi, A. S. A., Al-Kaream, K. W. A., Hameedi, M. K., & Shakir, Z. H. (2023). Experimental and Theoretical Study to Evaluate the Previous Studies for Expansive Soils. Mathematical Modelling of Engineering Problems, 10(5), 1770–1776. doi:10.18280/mmep.100528.

Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. doi:10.1016/j.conbuildmat.2014.10.026.

Nelson, J. D., Chao, K.-C., Overton, D. D., Fox, Z. P., & Dunham-Friel, J. S. (2013). Grouted Micropiles for Foundation Remediation in Expansive Soil (8th Michael W. O’Neill Lecture). DFI Journal - The Journal of the Deep Foundations Institute, 7(1), 32–43. doi:10.1179/dfi.2013.003.

Choi, C., Cho, S. D., Goo, J., Jeoung, J., Lee, K. H., & Lee, J. H. (2008). Foundation construction method of micro pile using pack used in the same. Korea Patent, (10-2008), 0034653.

Choi C., Goo J.M., Lee J.H, and Cho S.D. “Development of New Micropiling Method Enhancing Frictional Resistance with Geotextile Pack.” Proceeding of ISM 9th Workshop on Micropiles, London, United Kingdom.

FHWA NHI-05-039 (2005).Micro-pile Design and Construction. United States Department of Transportation. No. FHWA NHI-05-039, Federal Highway Administration, Washington, D.C., United States.

Han, J., & Ye, S. L. (2006). A field study on the behavior of a foundation underpinned by micropiles. Canadian Geotechnical Journal, 43(1), 30–42. doi:10.1139/t05-087.

Al Saudi, N. K. S., Al-Gharbawi, A. S. A., Rajab, N. A. A., & Tanyrbergenova, G. (2015). Sand and stone columns in soft soil at different relative densities. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 2121–2126. doi:10.3208/jgssp.IRQ-05.

Bellato, D., D’Agostini, S., Cola, S., & Simonini, P. (2016). Behaviour of micropiles in heterogeneous coarse soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 169(3), 250–263. doi:10.1680/jgeen.15.00069.

Lizzi, F. (1978). Reticulated Root Piles to Correct Landslides. ASCE Convention, Chicago, United States, Preprint, No. 3370, 25.

Cantoni, R., Collotta, T., Ghionna, V. N., & Moretti, P. C. (1989). A design method for reticulated micropile structures in sliding slopes. Ground engineering, 22(4), 4147.

Juran, I., Benslimane, A., & Bruce, D. A. (1996). Slope stabilization by micropile reinforcement. In Proceedings of the Seventh International Symposium on Landslides, Trondheim, Norway, 1715–1726.

Sun, S. W., Zhu, B. Z., & Wang, J. C. (2013). Design method for stabilization of earth slopes with micropiles. Soils and Foundations, 53(4), 487–497. doi:10.1016/j.sandf.2013.06.002.

Mujah, D., Hazarika, H., Watanabe, N., & Ahmad, F. (2016). Soil Arching Effect in Sand Reinforced with Micropiles Under Lateral Load. Soil Mechanics and Foundation Engineering, 53(3), 152–157. doi:10.1007/s11204-016-9379-3.

Nusier, O. K., & Alawneh, A. S. (2004). Micropile technique to control upward movement of lightweight structures over expansive soils. Geotechnical and Geological Engineering, 22(1), 89–104. doi:10.1023/B:GEGE.0000013999.42592.56.

Nusier, O. K., Alawneh, A. S., & Abdullatit, B. M. (2009). Small-scale micropiles to control heave on expansive clays. Proceedings of the Institution of Civil Engineers: Ground Improvement, 162(1), 27–35. doi:10.1680/grim.2009.162.1.27.

Fattah, M. Y., Al – Shakarchi, Y. J., Kadhim, Y. M. (2010). Investigation on the Use of Micropiles for Substitution of Defected Piles by the Finite Element Method. Journal of Engineering, 16(3), 5300 – 5314.

Borthakur, N., & Dey, A. K. (2018). Experimental Investigation on Load Carrying Capacity of Micropiles in Soft Clay. Arabian Journal for Science and Engineering, 43(4), 1969–1981. doi:10.1007/s13369-017-2894-3.

Kong, G., Wen, L., Liu, H., Zheng, J., & Yang, Q. (2020). Installation effects of the post-grouted micropile in marine soft clay. Acta Geotechnica, 15(12), 3559–3569. doi:10.1007/s11440-020-00993-x.

Baqir, H. H., Al-Soudany, K. Y. H., & Al-Gharbawi, A. S. A. (2020). Clay Columns Stabilized with Fly Ash in Soft Soils. IOP Conference Series: Materials Science and Engineering, 737(1). doi:10.1088/1757-899X/737/1/012095.

Aswad, M. F., Al-Gharbawi, A. S. A., Fattah, M. Y., Mustfa, R. H., & Hameed, H. R. (2023). Improvement of Clayey Soil Characteristics Using Poly Acrylamide Geopolymer. Transportation Infrastructure Geotechnology. doi:10.1007/s40515-023-00340-z.

Tessema, A. T., Wolelaw, N. M., Abebe, A. E., Alene, G. A., & Abeje, B. T. (2023). Utilization of Coffee Husk Ash on the Geotechnical Properties of Gypsum-Stabilized Expansive Clayey Soil. Advances in Civil Engineering, 1–13. doi:10.1155/2023/3101774.

Moradi Moghaddam, H., Keramati, M., Ramesh, A., & Naderi, R. (2021). Experimental Evaluation of the Effects of Structural Parameters, Installation Methods and Soil Density on the Micropile Bearing Capacity. International Journal of Civil Engineering, 19(11), 1313–1325. doi:10.1007/s40999-021-00629-5.

Neguse, D., Assefa, E., & Assefa, S. M. (2023). Study on the Performance of Expansive Subgrade Soil Stabilized with Enset Ash. Advances in Civil Engineering, 2023. doi:10.1155/2023/7851261.

Cheng, H., Sui, G., Wang, G., Deng, J., Wei, H., Xu, R., He, Y., & Yang, W. (2023). Study on the Optimization of Pile Length of Micropiles in Soil Landslides. Applied Sciences (Switzerland), 13(17), 9980. doi:10.3390/app13179980.

Ghrairi, F., Lavasan, A. A., & Wichtmann, T. (2022). Evaluation of the Installation Effect on the Performance of a Granular Column. Geosciences (Switzerland), 12(5). doi:10.3390/geosciences12050216.

Pincus, H., Abduljauwad, S., & Al-Sulaimani, G. (1993). Determination of Swell Potential of Al-Qatif Clay. Geotechnical Testing Journal, 16(4), 469. doi:10.1520/gtj10287j.

Badaradinni, B. M., Hulagabali, A. M., Solanki, C. H., & Dodagoudar, G. R. (2019). Experimental study of heave control technique for expansive soil using micropiles and geotextile layers. Lecture Notes in Civil Engineering, 14, 35–43. doi:10.1007/978-981-13-0559-7_5.

Ali, M., & Ahmed, S. M. (2011). Micropile technique to control heave on expansive soils. Proceedings of Indian Geotechnical Conference, Kochi (Paper No. D311), 22–25.

Hussein, S. A., & Ali, H. A. (2019). Stabilization of expansive soils using polypropylene fiber. Civil Engineering Journal, 5(3), 624-635. doi:10.28991/cej-2019-03091274.

Yacine, D. M., Madani, S., & Dib, M. (2023). Effect of Polypropylene Fibers on Swelling Potential and Shear Strength of Clay. Civil Engineering Journal, 9(3), 544-555. doi:10.28991/CEJ-2023-09-03-04.

Al-Gharbawi, A. S., Najemalden, A. M., & Fattah, M. Y. (2022). Expansive Soil Stabilization with Lime, Cement, and Silica Fume. Applied Sciences, 13(1), 436. doi:10.3390/app13010436.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-01-017


  • There are currently no refbacks.

Copyright (c) 2024 Mohammed Y. Fattah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.