An Empirical Formula for Assessing the Characteristic Strength of Unreinforced Laterite Stone Masonry

Hassane Seini Moussa, Decroly Djoubissié Denouwé, Abdou Lawane, Anne Pantet, Mamadou Diop, Koami Wisdom Boko


This study aims to determine the needed coefficients for evaluating the uniaxial compressive strength characteristic value for masonry structures made of Laterite Stone (LS) and cement mortar, resulting from experiments conducted in the laboratory evaluating the compressive strengths of the laterite stone and mortar separately in masonry. It proposes calculation coefficients for the completion of Eurocode 6 data that fit the behavior of laterite stone-based masonry. The laterite stone blocks are extracted from three quarries in southern Burkina Faso. The dimensions of the masonry samples tested are 800 mm × 800 mm × 135 mm (±5 mm) with a cement mortar joint of 20 mm (±5 mm) thick. The different failure modes of masonry were also explored. The tests carried out on the masonry showed that the failure is initiated by vertical cracks through the block-mortar interface at a quarter of the width of the walls, generally at 40 to 60% of their maximum strength. The statistical analysis made through a linear regression from the standard model of approximation of the characteristic strength of masonry in Eurocode 6 was used to set out parameters for the empirical relation. The proposed formula considers the intrinsic properties of the block and the mortar, the thickness of the mortar, the dimensions of the masonry block, and the geometry of the masonry itself to evaluate its compression strength. The adequacy between the model and the experimental values is evaluated through the coefficient of determination and the standard error of 0.94 and 0.041 MPa, respectively.


Doi: 10.28991/CEJ-2024-010-04-07

Full Text: PDF


Laterite Stone; Masonry; Uniaxial Compression; Empirical Formula.


Lawane Gana, A. (2014). Characterization of indurated lateritic materials for better use in housing in Africa. PhD Thesis, University of Le Havre, Le Havre, France. (In French).

Ndzié Mvindi, A. T., Onana, V. L., Ngo’o Ze, A., Ohandja, H. N., & Ekodeck, G. E. (2017). Influence of hydromorphic conditions in the variability of geotechnical parameters of gneiss-derived lateritic gravels in a savannah tropical humid area (Centre Cameroon), for road construction purposes. Transportation Geotechnics, 12, 70–84. doi:10.1016/j.trgeo.2017.08.003.

Oyelami, C. A., & Van Rooy, J. L. (2016). A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective. Journal of African Earth Sciences, 119, 226–237. doi:10.1016/j.jafrearsci.2016.03.018.

Abhilash, H. N., McGregor, F., Millogo, Y., Fabbri, A., Séré, A. D., Aubert, J. E., & Morel, J. C. (2016). Physical, mechanical and hygrothermal properties of lateritic building stones (LBS) from Burkina Faso. Construction and Building Materials, 125, 731–741. doi:10.1016/j.conbuildmat.2016.08.082.

Lawane, A., Pantet, A., Vinai, R., & Thomassin, J. H. (2011). Geological and geomechanical study of Dano laterites (Burkina Faso) for use in housing. (In French).

Kasthurba, A. K., Santhanam, M., & Mathews, M. S. (2007). Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India - Part 1: Field studies and profile characterisation. Construction and Building Materials, 21(1), 73–82. doi:10.1016/j.conbuildmat.2005.07.006.

Vasanelli, E., Colangiuli, D., Calia, A., Sbartaï, Z. M., & Breysse, D. (2017). Combining non-invasive techniques for reliable prediction of soft stone strength in historic masonries. Construction and Building Materials, 146, 744–754. doi:10.1016/j.conbuildmat.2017.04.146.

Zoungrana, O., Bologo/Traoré, M., Messan, A., Nshimiyimana, P., & Pirotte, G. (2021). The Paradox around the Social Representations of Compressed Earth Block Building Material in Burkina Faso: The Material for the Poor or the Luxury Material? Open Journal of Social Sciences, 9(1), 50–65. doi:10.4236/jss.2021.91004.

Zoungrana, O., Bologo-Traore, M., Hema, C., Nshimiyimana, P., Pirotte, G., & Messan, A. (2020). Sustainable habitat in Burkina Faso: Social trajectories, logics and motivations for the use of compressed earth blocks for housing construction in ouagadougou. WIT Transactions on the Built Environment, 195, 165–172. doi:10.2495/ARC200131.

Ouedraogo, A. L. S.-N., Hema, C., N’guiro, S. M., Nshimiyimana, P., & Messan, A. (2024). Optimisation of Thermal Comfort of Building in a Hot and Dry Tropical Climate: A Comparative Approach between Compressed Earth/Concrete Block Envelopes. Journal of Minerals and Materials Characterization and Engineering, 12(1), 1–16. doi:10.4236/jmmce.2024.121001.

Nshimiyimana, P., Hema, C., Zoungrana, O., Courard, L., & Messan, A. (2022). Contribution to improving the quality of raw earth habitat in Burkina Faso. NoMaD 2022, 16-17 November, 2022, Montpellier, French. (In French).

Moussa, H. S., Nshimiyimana, P., Hema, C., Zoungrana, O., Messan, A., & Courard, L. (2019). Comparative Study of Thermal Comfort Induced from Masonry Made of Stabilized Compressed Earth Block vs Conventional Cementitious Material. Journal of Minerals and Materials Characterization and Engineering, 7(6), 385–403. doi:10.4236/jmmce.2019.76026.

Hema, C., Ouédraogo, A. L. S. N., Bationo, G. B., Kabore, M., Nshimiyimana, P., & Messan, A. (2024). A field study on thermal acceptability and energy consumption of mixed-mode offices building located in the hot-dry climate of Burkina Faso. Science and Technology for the Built Environment, 30(2), 184–193. doi:10.1080/23744731.2023.2291007.

Kaboré, M., Lawane, A., Sawadogo, C., Lo, M., Messan, A., & Pantet, A. (2019). Études expérimentales du comportement mécanique sous charges verticales des maçonneries en Blocs de Latérite Taillée (BLT). Afrique SCIENCE, 15(1), 201–213.

NF EN 1996-1-1+A1. (2013). Eurocode 6 - Design of masonry structures - Part 1-1: general rules for reinforced and unreinforced masonry structures. AFNOR Editions, Saint-Denis, France. (In French).

Alili, S. (2013). Technical guide for an operation to rehabilitate the village architectural heritage of Kabylie. Ph.D. Thesis, University of Tizi Ouzou, Tizi Ouzou, Algeria. (In French).

Hendry, A. W., & Malek, M. H. (1986). Characteristic Compressive Strength of Brickwork Walls from Collected Test Results. International Masonry Institute, 7, 15–24.

Lourenço, P. B., & Pina-Henriques, J. (2006). Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry. Computers and Structures, 84(29–30), 1977–1989. doi:10.1016/j.compstruc.2006.08.009.

Mann, W. (1982). Statistical evaluation of tests on masonry by potential functions. Sixth international brick masonry conference, 16-19 May, 1982, Rome, Italy.

Engesser, F. (1907). Over long-span arched bridges. Zeitschrift für Architekturs und Ingenieurwesen, 53, 403-440. (In German).

Garzón-Roca, J., Marco, C. O., & Adam, J. M. (2013). Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on Neural Networks and Fuzzy Logic. Engineering Structures, 48, 21–27. doi:10.1016/j.engstruct.2012.09.029.

Dymiotis, C., & Gutlederer, B. M. (2002). Allowing for uncertainties in the modelling of masonry compressive strength. Construction and Building Materials, 16(8), 443–452. doi:10.1016/S0950-0618(02)00108-3.

Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-Strain Characteristics of Clay Brick Masonry under Uniaxial Compression. Journal of Materials in Civil Engineering, 19(9), 728–739. doi:10.1061/(asce)0899-1561(2007)19:9(728).

Basha, S. H., & Kaushik, H. B. (2015). Evaluation of Nonlinear Material Properties of Fly Ash Brick Masonry under Compression and Shear. Journal of Materials in Civil Engineering, 27(8), 4014227. doi:10.1061/(asce)mt.1943-5533.0001188.

Llorens, J., Llorens, M., Chamorro, M. A., & Soler, J. (2020). Experimental Behavior of Brick Masonry under Uniaxial Compression on Parallel-to-Face Brick. Single-Leaf Case Study. International Journal of Architectural Heritage, 14(1), 23–37. doi:10.1080/15583058.2018.1503361.

Kandymov, N., Mohd Hashim, N. F., Ismail, S., & Durdyev, S. (2022). Derivation of Empirical Relationships to Predict Cambodian Masonry Strength. Materials, 15(14), 5030. doi:10.3390/ma15145030.

Kumavat, H. R. (2016). An Experimental Investigation of Mechanical Properties in Clay Brick Masonry by Partial Replacement of Fine Aggregate with Clay Brick Waste. Journal of The Institution of Engineers (India): Series A, 97(3), 199–204. doi:10.1007/s40030-016-0178-7.

Thamboo, J. A., & Dhanasekar, M. (2019). Correlation between the performance of solid masonry prisms and wallettes under compression. Journal of Building Engineering, 22, 429–438. doi:10.1016/j.jobe.2019.01.007.

Dayaratnam, P. (1987). Brick and reinforced brick structures. South Asia Books, Delhi, India.

Chourasia, A., Singhal, S., & Chourasia, A. (2023). Numerical simulation of laterite confined masonry building subjected to quasi-static monotonic lateral loading. Journal of Structural Integrity and Maintenance, 8(1), 1–11. doi:10.1080/24705314.2022.2142895.

Sajanthan, K., Balagasan, B., & Sathiparan, N. (2019). Prediction of compressive strength of stabilized earth block masonry. Advances in Civil Engineering, 2019. doi:10.1155/2019/2072430.

Caldeira, F. E., Nalon, G. H., Oliveira, D. S. de, Pedroti, L. G., Ribeiro, J. C. L., Ferreira, F. A., & Carvalho, J. M. F. de. (2020). Influence of joint thickness and strength of mortars on the compressive behavior of prisms made of normal and high-strength concrete blocks. Construction and Building Materials, 234. doi:10.1016/j.conbuildmat.2019.117419.

Lawrence, S. J., & Page, A. W. (2008). New Australian standards for masonry in small structures. Proc. 14 IBMAC, Sydney, Australia.

Mojsilović, N., & Stewart, M. G. (2015). Probability and structural reliability assessment of mortar joint thickness in load-bearing masonry walls. Structural Safety, 52, 209–218. doi:10.1016/j.strusafe.2014.02.005.

Sarhat, S. R., & Sherwood, E. G. (2014). The prediction of compressive strength of ungrouted hollow concrete block masonry. Construction and Building Materials, 58, 111–121. doi:10.1016/j.conbuildmat.2014.01.025.

Thaickavil, N. N., & Thomas, J. (2018). Behaviour and strength assessment of masonry prisms. Case Studies in Construction Materials, 8, 23–38. doi:10.1016/j.cscm.2017.12.007.

Fortes, E. S., Parsekian, G. A., & Fonseca, F. S. (2015). Relationship between the Compressive Strength of Concrete Masonry and the Compressive Strength of Concrete Masonry Units. Journal of Materials in Civil Engineering, 27(9), 4014238. doi:10.1061/(asce)mt.1943-5533.0001204.

Rizaee, S., Hagel, M. D., Kaheh, P., & Shrive, N. (2016). Comparison of compressive strength of concrete block masonry prisms and solid concrete prisms. Brick and Block Masonry, CRC Press, Boca Raton, United States. doi:10.1201/b21889-228.

NF EN 771-6 + A1. (2015). Specifications for masonry units - Part 6: natural stone masonry units. AFNOR Editions, Saint-Denis, France. (In French).

NF EN 13373. (2020). Test methods for natural stones - Determination of dimensions and other geometric characteristics AFNOR Editions, Saint-Denis, France. (In French).

NF EN 998-2. (2016). Definitions and specifications of mortars for masonry - Part 2: mortars for mounting masonry units. AFNOR Editions, Saint-Denis, France. (In French).

NF EN 772-16. (2011). Methods of testing masonry elements - Part 16: determination of dimensions. AFNOR Editions, Saint-Denis, France. (In French).

NF EN 772-1 + A1. (2015). Methods of testing masonry units - Part 1: determination of compressive strength. AFNOR Editions, Saint-Denis, France. (In French).

NF EN 1015-11. (2019). Methods of testing mortars for masonry - Part 11: determination of flexural and compressive strength of hardened mortar. AFNOR Editions, Saint-Denis, France. (In French).

NF EN 1052-1. (1999). Masonry testing methods - Part 1: determination of compressive strength. AFNOR Editions, Saint-Denis, France. (In French).

PAGE, A. (1981). The Biaxial Compressive Strength of Brick Masonry. Proceedings of the Institution of Civil Engineers, 71(3), 893–906. doi:10.1680/iicep.1981.1825.

Wang, Z., Li, L., Zhou, J., Chen, R., Leng, J., Zhang, H., & Yang, J. (2024). Experimental investigation and calculation method of the interfacial bonding performance of stone masonry reinforced with UHPC. Journal of Building Engineering, 85, 108435. doi:10.1016/j.jobe.2024.108435.

Domède, N., Pons, G., Sellier, A., & Fritih, Y. (2009). Mechanical behaviour of ancient masonry. Materials and Structures/Materiaux et Constructions, 42(1), 123–133. doi:10.1617/s11527-008-9372-z.

Costigan, A., Pavía, S., & Kinnane, O. (2015). An experimental evaluation of prediction models for the mechanical behavior of unreinforced, lime-mortar masonry under compression. Journal of Building Engineering, 4, 283–294. doi:10.1016/j.jobe.2015.10.001.

Zahra, T., Thamboo, J., & Asad, M. (2021). Compressive strength and deformation characteristics of concrete block masonry made with different mortars, blocks and mortar beddings types. Journal of Building Engineering, 38. doi:10.1016/j.jobe.2021.102213.

Álvarez-Pérez, J., Chávez-Gómez, J. H., Terán-Torres, B. T., Mesa-Lavista, M., & Balandrano-Vázquez, R. (2020). Multifactorial behavior of the elastic modulus and compressive strength in masonry prisms of hollow concrete blocks. Construction and Building Materials, 241. doi:10.1016/j.conbuildmat.2020.118002.

Abu-Bakr, M., Mahmood, H. F., Mohammed, A. A., & Ahmed, S. A. (2024). Evaluation of mechanical properties and shear-bond strength of mortar containing natural extract admixture. Construction and Building Materials, 418, 135377. doi:10.1016/j.conbuildmat.2024.135377.

Zhang, P., Fan, S., Liu, Y., Su, C., Hu, J., & Sheikh, S. A. (2024). Axial compressive performance of masonry columns strengthened with ECC jacket and FRP strips. Engineering Structures, 304, 117661. doi:10.1016/j.engstruct.2024.117661.

Corradi, M., Borri, A., & Vignoli, A. (2003). Experimental study on the determination of strength of masonry walls. Construction and Building Materials, 17(5), 325–337. doi:10.1016/S0950-0618(03)00007-2.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-07


  • There are currently no refbacks.

Copyright (c) 2024 Hassane Seini Moussa, Abdou Lawane, Décroly Djoubissie D., Mamadou Diop, Anne Pantet, Wisdom Koami Boko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.