Dynamic Buckling Analysis of Ductile Damage Evolution for Thin Shell With Lemaitre’s Model

Iheb Hammar, Mohamed Djermane, Belkacem Amieur

Abstract


Thin-shell structures are used in several fields of construction and are often exposed to severe dynamic environments, making them susceptible to dynamic instabilities. These instabilities are typically preceded by varying degrees of damage to the shell, justifying the need to incorporate this behavior in the formulation of the finite elements used. The objective of this work is to evaluate the different dynamic instability criterion in the presence of damage, afterward, evaluate the influence of this behavior on the stability of shells subjected to the dynamic excitations. The methodology of this project is essentially numerical, based on the finite element method. We are asked to program the introduction of damaging behavior and Lemaitre’s model criteria in the DYNCOQ program developed locally. To examine the results, two examples extracted from the literature were presented. The first model aimed to confirm the proper functioning of the program and the convergence of the plasticity criterion (Lemaitre's model). As for the second model, it allows us to test the dynamic instability. A comparison was made with experimental data from previously published literature, revealing a strong agreement between the calculated and experimental results. The obtained results prove the utility of considering this behavior in the shell analysis.

 

Doi: 10.28991/CEJ-2024-010-03-012

Full Text: PDF


Keywords


Dynamic Buckling; Shells; Damage; Finite Element; Imperfections; Damage Measurement.

References


McClintock, F. A. (1968). A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics, Transactions ASME, 35(2), 363–371. doi:10.1115/1.3601204.

Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part 1 - yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, Transactions of the ASME, 99(1), 2–15. doi:10.1115/1.3443401.

Needleman, A., & Tvergaard, V. (1984). An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, 32(6), 461–490. doi:10.1016/0022-5096(84)90031-0.

Lemaitre, J. (1985). A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, Transactions of the ASME, 107(1), 83–89. doi:10.1115/1.3225775.

Lee, S. W., Pourboghrat, F. (2005). A Simulation for the Punchless Piercing Process using Lemaitre Damage Model. AIP Conference Proceedings, 778, 505–510. doi:10.1063/1.2011271.

He, S., Wang, H., Bordas, S. P. A., & Yu, P. (2020). A Developed Damage Constitutive Model for Circular Steel Tubes of Reticulated Shells. International Journal of Structural Stability and Dynamics, 20(9). doi:10.1142/S0219455420501060.

Li, Y., Liu, Y., Mo, X., Shen, W., Li, C., Sun, X., & Xue, F. (2024). Damage evolution and fracture of aluminum alloy based on a modified Lemaitre model. Engineering Fracture Mechanics, 295, 109778. doi:10.1016/j.engfracmech.2023.109778.

Laboubi, S., Boussaid, O., Zaaf, M., & Ghennai, W. (2023). Numerical investigation and experimental validation of Lemaitre ductile damage model for DC04 steel and application to deep drawing process. International Journal of Advanced Manufacturing Technology, 126(5–6), 2283–2294. doi:10.1007/s00170-023-11244-0.

Anduquia-Restrepo, J., Narváez-Tovar, C., & Rodríguez-Baracaldo, R. (2018). Computational and numerical analysis of ductile damage evolution under a load-unload tensile test in dual-phase steel. Journal of Mechanical Engineering, 64(5), 339–348. doi:10.5545/sv-jme.2017.5137.

De Souza Neto, E. A. (2002). A fast, one-equation integration algorithm for the Lemaitre ductile damage model. Communications in Numerical Methods in Engineering, 18(8), 541–554. doi:10.1002/cnm.511.

Shamshiri, A. R., Haji Aboutalebi, F., & Poursina, M. (2023). Presenting an explicit step-by-step algorithm for lemaitre’s ductile damage model with the crack closure effect in tensile-compressive loadings. Mechanics Based Design of Structures and Machines, 51(8), 4452–4466. doi:10.1080/15397734.2021.1966309.

Djermane, M. (2007). Dynamic Buckling of Thin Shells in Seismic Zones. Ph.D. Thesis, Houari-boumédièn University of Science and Technology, Bab Ezzouar, Algeria. (In French).

Djermane, M., Chelghoum, A., Amieur, B., & Labbaci, B. (2007). Nonlinear dynamic analysis of thin shells using a finite element with drilling degrees of freedom. International Journal of Applied Engineering Research, 2(1), 97-108.

Djermane, M., Zaoui, D., Labbaci, B., & Hammadi, F. (2014). Dynamic buckling of steel tanks under seismic excitation: Numerical evaluation of code provisions. Engineering Structures, 70, 181–196. doi:10.1016/j.engstruct.2014.03.037.

Belkacem, A. (2019). Instability by dynamic buckling These Amieur 2018. Ph.D. Thesis, Université Tahri Mohammed Béchar, Béchar, Algeria. (In French).

Amieur, B., Djermane, M., Zenkour, A. M., & Hammadi, F. (2023). Dynamic buckling analysis of functionally graded shells. Mechanics Based Design of Structures and Machines, 1–16. doi:10.1080/15397734.2023.2227886.

Dirichlet, P.G.L. (1846). Note II: On the Stability of the Equilibrium. Works of Lagrange, 11, 457–459.

Lyapunov, A. (1907). General problem of movement stability. Annals of the Faculty of Sciences of Toulouse Mathematics, 9, 203–474. doi:10.5802/afst.246.

Hoff, N. J., & Bruce, V. G. (1953). Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches. Journal of Mathematics and Physics, 32(1–4), 276–288. doi:10.1002/sapm1953321276.

Simitses, G. (1966). Dynamic Snap-Through Buckling of Shallow Spherical Caps. 7th Structures and Materials Conference. doi:10.2514/6.1966-1712.

Raftoyiannis, I. G., Constantakopoulos, T. G., Michaltsos, G. T., & Kounadis, A. N. (2006). Dynamic buckling of a simple geometrically imperfect frame using Catastrophe Theory. International Journal of Mechanical Sciences, 48(10), 1021–1030. doi:10.1016/j.ijmecsci.2006.05.010.

Bamberger Y. (1981). Disaster Theory and Elastic Stability of Structures. Le Flambement des Structures L’Hermite, 323–343.

Kounadis, A. N., & Raftoyiannis, J. (1990). Dynamic stability criteria of nonlinear elastic damped/undamped systems under step loading. AIAA Journal, 28(7), 1217–1223. doi:10.2514/3.25197.

Koimadis, A. N. (1991). Nonlinear dynamic buckling of discrete dissipative or non-dissipative systems under step loading. AIAA Journal, 29(2), 280–289. doi:10.2514/3.10575.

Kounadis, A. N. (1996). On the nonlinear dynamic buckling mechanism of autonomous dissipative/non-dissipative discrete structural systems. Archive of Applied Mechanics, 66(6), 395–408. doi:10.1007/bf00803674.

Kounadis, A. N., Gantes, C. J., & Bolotin, V. V. (1999). Dynamic buckling loads of autonomous potential systems based on the geometry of the energy surface. International Journal of Engineering Science, 37(12), 1611–1628. doi:10.1016/S0020-7225(98)00136-0.

Budiansky, B. (1962). Axisymmetric dynamic buckling of clamped shallow spherical shells. NASA TN, 1510, 597-606.

Budiansky, B. (1967). Dynamic Buckling of Elastic Structures: Criteria and Estimates. Proceedings of an International Conference Held at Northwestern University, Evanston, Illinois, 83-106. doi:10.1016/B978-1-4831-9821-7.50010-7.

Saigal, S., & Yang, T. Y. (1985). Nonlinear dynamic analysis with a 48 d.o.f. curved thin shell element. International Journal for Numerical Methods in Engineering, 21(6), 1115–1128. doi:10.1002/nme.1620210611.

Nagarajan, S., & Popov, E. P. (1974). Elastic-plastic dynamic analysis of axisymmetric solids. Computers and Structures, 4(6), 1117–1134. doi:10.1016/0045-7949(74)90028-5.

Bathe, K. J., Ramm, E., & Wilson, E. L. (1975). Finite element formulations for large deformation dynamic analysis. International Journal for Numerical Methods in Engineering, 9(2), 353–386. doi:10.1002/nme.1620090207.

Djermane, M., Chelghoum, A., Amieur, B., & Labbaci, B. (2007). Nonlinear dynamic analysis of thin shells using a finite element with drilling degrees of freedom. International Journal of Applied Engineering Research, 2(1), 97-108.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 HAMMAR IHEB

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message