Dynamic Buckling Analysis of Ductile Damage Evolution for Thin Shell With Lemaitre’s Model
Abstract
Doi: 10.28991/CEJ-2024-010-03-012
Full Text: PDF
Keywords
References
McClintock, F. A. (1968). A criterion for ductile fracture by the growth of holes. Journal of Applied Mechanics, Transactions ASME, 35(2), 363–371. doi:10.1115/1.3601204.
Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part 1 - yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, Transactions of the ASME, 99(1), 2–15. doi:10.1115/1.3443401.
Needleman, A., & Tvergaard, V. (1984). An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, 32(6), 461–490. doi:10.1016/0022-5096(84)90031-0.
Lemaitre, J. (1985). A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, Transactions of the ASME, 107(1), 83–89. doi:10.1115/1.3225775.
Lee, S. W., Pourboghrat, F. (2005). A Simulation for the Punchless Piercing Process using Lemaitre Damage Model. AIP Conference Proceedings, 778, 505–510. doi:10.1063/1.2011271.
He, S., Wang, H., Bordas, S. P. A., & Yu, P. (2020). A Developed Damage Constitutive Model for Circular Steel Tubes of Reticulated Shells. International Journal of Structural Stability and Dynamics, 20(9). doi:10.1142/S0219455420501060.
Li, Y., Liu, Y., Mo, X., Shen, W., Li, C., Sun, X., & Xue, F. (2024). Damage evolution and fracture of aluminum alloy based on a modified Lemaitre model. Engineering Fracture Mechanics, 295, 109778. doi:10.1016/j.engfracmech.2023.109778.
Laboubi, S., Boussaid, O., Zaaf, M., & Ghennai, W. (2023). Numerical investigation and experimental validation of Lemaitre ductile damage model for DC04 steel and application to deep drawing process. International Journal of Advanced Manufacturing Technology, 126(5–6), 2283–2294. doi:10.1007/s00170-023-11244-0.
Anduquia-Restrepo, J., Narváez-Tovar, C., & Rodríguez-Baracaldo, R. (2018). Computational and numerical analysis of ductile damage evolution under a load-unload tensile test in dual-phase steel. Journal of Mechanical Engineering, 64(5), 339–348. doi:10.5545/sv-jme.2017.5137.
De Souza Neto, E. A. (2002). A fast, one-equation integration algorithm for the Lemaitre ductile damage model. Communications in Numerical Methods in Engineering, 18(8), 541–554. doi:10.1002/cnm.511.
Shamshiri, A. R., Haji Aboutalebi, F., & Poursina, M. (2023). Presenting an explicit step-by-step algorithm for lemaitre’s ductile damage model with the crack closure effect in tensile-compressive loadings. Mechanics Based Design of Structures and Machines, 51(8), 4452–4466. doi:10.1080/15397734.2021.1966309.
Djermane, M. (2007). Dynamic Buckling of Thin Shells in Seismic Zones. Ph.D. Thesis, Houari-boumédièn University of Science and Technology, Bab Ezzouar, Algeria. (In French).
Djermane, M., Chelghoum, A., Amieur, B., & Labbaci, B. (2007). Nonlinear dynamic analysis of thin shells using a finite element with drilling degrees of freedom. International Journal of Applied Engineering Research, 2(1), 97-108.
Djermane, M., Zaoui, D., Labbaci, B., & Hammadi, F. (2014). Dynamic buckling of steel tanks under seismic excitation: Numerical evaluation of code provisions. Engineering Structures, 70, 181–196. doi:10.1016/j.engstruct.2014.03.037.
Belkacem, A. (2019). Instability by dynamic buckling These Amieur 2018. Ph.D. Thesis, Université Tahri Mohammed Béchar, Béchar, Algeria. (In French).
Amieur, B., Djermane, M., Zenkour, A. M., & Hammadi, F. (2023). Dynamic buckling analysis of functionally graded shells. Mechanics Based Design of Structures and Machines, 1–16. doi:10.1080/15397734.2023.2227886.
Dirichlet, P.G.L. (1846). Note II: On the Stability of the Equilibrium. Works of Lagrange, 11, 457–459.
Lyapunov, A. (1907). General problem of movement stability. Annals of the Faculty of Sciences of Toulouse Mathematics, 9, 203–474. doi:10.5802/afst.246.
Hoff, N. J., & Bruce, V. G. (1953). Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches. Journal of Mathematics and Physics, 32(1–4), 276–288. doi:10.1002/sapm1953321276.
Simitses, G. (1966). Dynamic Snap-Through Buckling of Shallow Spherical Caps. 7th Structures and Materials Conference. doi:10.2514/6.1966-1712.
Raftoyiannis, I. G., Constantakopoulos, T. G., Michaltsos, G. T., & Kounadis, A. N. (2006). Dynamic buckling of a simple geometrically imperfect frame using Catastrophe Theory. International Journal of Mechanical Sciences, 48(10), 1021–1030. doi:10.1016/j.ijmecsci.2006.05.010.
Bamberger Y. (1981). Disaster Theory and Elastic Stability of Structures. Le Flambement des Structures L’Hermite, 323–343.
Kounadis, A. N., & Raftoyiannis, J. (1990). Dynamic stability criteria of nonlinear elastic damped/undamped systems under step loading. AIAA Journal, 28(7), 1217–1223. doi:10.2514/3.25197.
Koimadis, A. N. (1991). Nonlinear dynamic buckling of discrete dissipative or non-dissipative systems under step loading. AIAA Journal, 29(2), 280–289. doi:10.2514/3.10575.
Kounadis, A. N. (1996). On the nonlinear dynamic buckling mechanism of autonomous dissipative/non-dissipative discrete structural systems. Archive of Applied Mechanics, 66(6), 395–408. doi:10.1007/bf00803674.
Kounadis, A. N., Gantes, C. J., & Bolotin, V. V. (1999). Dynamic buckling loads of autonomous potential systems based on the geometry of the energy surface. International Journal of Engineering Science, 37(12), 1611–1628. doi:10.1016/S0020-7225(98)00136-0.
Budiansky, B. (1962). Axisymmetric dynamic buckling of clamped shallow spherical shells. NASA TN, 1510, 597-606.
Budiansky, B. (1967). Dynamic Buckling of Elastic Structures: Criteria and Estimates. Proceedings of an International Conference Held at Northwestern University, Evanston, Illinois, 83-106. doi:10.1016/B978-1-4831-9821-7.50010-7.
Saigal, S., & Yang, T. Y. (1985). Nonlinear dynamic analysis with a 48 d.o.f. curved thin shell element. International Journal for Numerical Methods in Engineering, 21(6), 1115–1128. doi:10.1002/nme.1620210611.
Nagarajan, S., & Popov, E. P. (1974). Elastic-plastic dynamic analysis of axisymmetric solids. Computers and Structures, 4(6), 1117–1134. doi:10.1016/0045-7949(74)90028-5.
Bathe, K. J., Ramm, E., & Wilson, E. L. (1975). Finite element formulations for large deformation dynamic analysis. International Journal for Numerical Methods in Engineering, 9(2), 353–386. doi:10.1002/nme.1620090207.
Djermane, M., Chelghoum, A., Amieur, B., & Labbaci, B. (2007). Nonlinear dynamic analysis of thin shells using a finite element with drilling degrees of freedom. International Journal of Applied Engineering Research, 2(1), 97-108.
DOI: 10.28991/CEJ-2024-010-03-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 HAMMAR IHEB
This work is licensed under a Creative Commons Attribution 4.0 International License.