Evaluation of the Mechanical Behavior of Soil Stabilized with Asphalt Emulsion Using Multi-Stage Loading
Abstract
Doi: 10.28991/CEJ-2024-010-01-02
Full Text: PDF
Keywords
References
South African National Roads Agency. (2020). Manual for the Design and Construction of Bitumen Emulsion Stabilised Materials. South African National Roads Agency, Pretoria, South Africa.
Rahman, M. S., Erlingsson, S., & Ahmed, A. (2023). Modelling the permanent deformation of unbound granular materials in pavements. Road Materials and Pavement Design, 24(8), 1917–1938. doi:10.1080/14680629.2022.2108883.
Maghool, F., Arulrajah, A., Ghorbani, B., & Horpibulsuk, S. (2022). Strength and permanent deformation properties of demolition wastes, glass, and plastics stabilized with foamed bitumen for pavement bases. Construction and Building Materials, 320, 121213. doi:10.1016/j.conbuildmat.2021.126108.
Brito, N. J. C. O., Dantas Neto, S. A., Rodrigues, P. M. B., & Oliveira, J. C. G. de. (2022). Evaluation of curing time in shear strength of soil-emulsion mixtures with emulsion contents greater than 10%. Matéria (Rio de Janeiro), 27(2), 1-10. doi:10.1590/1517-7076-rmat-2022-0088. (In Portuguese).
Orosa, P., Pérez, I., & Pasandín, A. R. (2022). Evaluation of the shear and permanent deformation properties of cold in-place recycled mixtures with bitumen emulsion using triaxial tests. Construction and Building Materials, 328, 127054. doi:10.1016/j.conbuildmat.2022.127054.
Andavan, S., & Maneesh Kumar, B. (2020). Case study on soil stabilization by using bitumen emulsions - A review. Materials Today: Proceedings, 22(3), 1200–1202. doi:10.1016/j.matpr.2019.12.121.
Kamran, F., Basavarajappa, M., Bala, N., & Hashemian, L. (2021). Laboratory evaluation of stabilized base course using asphalt emulsion and asphaltenes derived from Alberta oil sands. Construction and Building Materials, 283, 122735. doi:10.1016/j.conbuildmat.2021.122735.
Oluyemi-Ayibiowu, B. D. (2019). Stabilization of lateritic soils with asphalt- emulsion. Nigerian Journal of Technology, 38(3), 603. doi:10.4314/njt.v38i3.9.
Alizadeh, A., & Modarres, A. (2019). Mechanical and Microstructural Study of RAP–Clay Composites Containing Bitumen Emulsion and Lime. Journal of Materials in Civil Engineering, 31(2), 4015107. doi:10.1061/(asce)mt.1943-5533.0002583.
Bunga, E. (2018). A model of sandy clay erosion rate stabilized with emulsion asphalt. ARPN Journal of Engineering and Applied Sciences, 13(1), 42-51.
Mignini, C., Cardone, F., & Graziani, A. (2018). Experimental study of bitumen emulsion–cement mortars: mechanical behavior and relation to mixtures. Materials and Structures, 51(6), 149. doi:10.1617/s11527-018-1276-y.
Yaghoubi, E., Ghorbani, B., Saberian, M., van Staden, R., Guerrieri, M., & Fragomeni, S. (2023). Permanent deformation response of demolition wastes stabilised with bitumen emulsion as pavement base/subbase. Transportation Geotechnics, 39. doi:10.1016/j.trgeo.2023.100934.
Barbieri, D. M., Lou, B., Dyke, R. J., Chen, H., Chandra Sahoo, U., Tingle, J. S., & Hoff, I. (2023). Dataset of mechanical properties of coarse aggregates stabilized with traditional and nontraditional additives: Stiffness, deformation, resistance to freezing and stripping. Data in Brief, 46, 1087813. doi:10.1016/j.dib.2022.108781.
EN13286-7. (2007). Unbound and Hydraulically Bound Mixtures - Part 7: Cyclic Load Triaxial Test for Unbound Mixtures. European Committee for Standardization, Brussels, Belgium.
Ghorbani, B., Arulrajah, A., Narsilio, G. A., Horpibulsuk, S., & Buritatum, A. (2023). Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes. Sustainability (Switzerland), 15(3), 2680. doi:10.3390/su15032680.
AG:PT/T053. (2000). Determination of Permanent Deformation and Resilient Modulus Characteristics of Unbound Granular Materialsunder Drained Conditions. AustRoads, Sydney, Australia.
Wang, C., Chazallon, C., Hornych, P., & Braymand, S. (2023). Permanent and resilient deformation behavior of recycled concrete aggregates from different sources, in pavement base and subbase. Road Materials and Pavement Design, 24(9), 2245–2262. doi:10.1080/14680629.2022.2134048.
Medeiros, A. S. de, Santana, C. S. A., & Silva, M. A. V. da. (2023). Permanent Deformation Analysis of Three Tropical Soils at Different Humidities Using Multistage Loading. Journal of Engineering Research, 3(15), 2–17. doi:10.22533/at.ed.3173152308055.
Arulrajah, A., Ghorbani, B., Narsilio, G., Horpibulsuk, S., & Leong, M. (2021). Thermal performance of geothermal pavements constructed with demolition wastes. Geomechanics for Energy and the Environment, 28, 100253. doi:10.1016/j.gete.2021.100253.
Ghorbani, B., Arulrajah, A., Narsilio, G., Horpibulsuk, S., & Bo, M. W. (2021). Dynamic characterization of recycled glass-recycled concrete blends using experimental analysis and artificial neural network modeling. Soil Dynamics and Earthquake Engineering, 142, 106544. doi:10.1016/j.soildyn.2020.106544.
Lin, B., Zhang, F., Feng, D., Tang, K., & Feng, X. (2017). Accumulative plastic strain of thawed saturated clay under long-term cyclic loading. Engineering Geology, 231, 230–237. doi:10.1016/j.enggeo.2017.09.028.
Salour, F., & Erlingsson, S. (2017). Permanent deformation characteristics of silty sand subgrades from multistage RLT tests. International Journal of Pavement Engineering, 18(3), 236–246. doi:10.1080/10298436.2015.1065991.
M145-91 (2003). Standard specification for classification of soils and soil-aggregate mixtures for highway construction purposes. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
Zaroni, M. J., & Santos, R. D. (2021). Tropical soil formation. Empresa Brasileira de Pesquisa Agropecuária, Brasília, Brazil. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/solos-tropicais/formacao-do-solo-tropical (accessed on November 2023). (In Portuguese).
ASTM D422-63. (2007). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States.
ASTM D4318-17e1. (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
ASTM D698-12. (2021). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.
ASTM D2216-98. (2017). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D2216-98.
ASTM D3967-08. (2016) Standard test method for splitting tensile strength of intact rock core specimens. ASTM International, Pennsylvania, United States. doi:10.1520/D3967-08.
Franco, F. A. C. P. (2023). Multiple-Layer Elastic Analysis Program (MEAP) (Version 2.4.3). DNIT, Brasília, Brazil. Available online: https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/medina (accessed on December 2023).
JAMOVI (2023). The JAMOVI Project. Available online: https://www.jamovi.org (accessed on December 2023).
DOI: 10.28991/CEJ-2024-010-01-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Alexandre Simas de Medeiros Simas
This work is licensed under a Creative Commons Attribution 4.0 International License.