Experimental and Numerical Simulation of Effects of High Temperature on RC Frame Infilled with Sandwich Panel
Abstract
Doi: 10.28991/CEJ-2024-010-01-018
Full Text: PDF
Keywords
References
Seeber, K. E., Andrews, R. J., Baty, J. R., Campbell, P. S., Dobbs, J. E., Force, G., . . ., Wescott, H. E. (1997). State-of-the-Art of Precast/Prestressed Sandwich Wall Panels. PCI Journal, 42(2), 92-134.
Mohamad, N., Khalil, A. I., Abdul Samad, A. A., & Goh, W. I. (2014). Structural behavior of precast lightweight foam concrete sandwich panel with double shear truss connectors under flexural load. ISRN Civil Engineering, 2014. doi:10.1155/2014/317941.
Benayoune, A., Samad, A. A. A., Trikha, D. N., Ali, A. A. A., & Ellinna, S. H. M. (2008). Flexural behaviour of pre-cast concrete sandwich composite panel - Experimental and theoretical investigations. Construction and Building Materials, 22(4), 580–592. doi:10.1016/j.conbuildmat.2006.11.023.
Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2017). Precast concrete sandwich one-way slabs under flexural loading. Engineering Structures, 138, 447–457. doi:10.1016/j.engstruct.2017.02.033.
Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2018). Flexural behavior of precast concrete sandwich panels under different loading conditions such as punching and bending. Alexandria Engineering Journal, 57(1), 309–320. doi:10.1016/j.aej.2016.11.016.
Carbonari, G., Cavalaro, S. H. P., Cansario, M. M., & Aguado, A. (2012). Flexural behaviour of light-weight sandwich panels composed by concrete and EPS. Construction and Building Materials, 35, 792–799. doi:10.1016/j.conbuildmat.2012.04.080.
Gara, F., Ragni, L., Roia, D., & Dezi, L. (2012). Experimental behaviour and numerical analysis of floor sandwich panels. Engineering Structures, 36, 258–269. doi:10.1016/j.engstruct.2011.12.011.
Bajracharya, R. M., Lokuge, W. P., Karunasena, W., Lau, K. T., & Mosallam, A. S. (2012). Structural evaluation of concrete expanded polystyrene sandwich panels for slab application. 22nd Australasian Conference on the Mechanics of Structures and Materials (ACMSM22), 11-14 December, 2012, Sydney, Australia.
Hou, H., Ji, K., Wang, W., Qu, B., Fang, M., & Qiu, C. (2019). Flexural behavior of precast insulated sandwich wall panels: Full-scale tests and design implications. Engineering Structures, 180(December 2018), 750–761. doi:10.1016/j.engstruct.2018.11.068.
Hou, H., Wang, W., Qu, B., & Dai, C. (2020). Testing of insulated sandwich panels with GFRP shear connectors. Engineering Structures, 209, 109954. doi:10.1016/j.engstruct.2019.109954.
Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2019). Experimental study on the flexural behavior of insulated concrete sandwich panels with wires as shear connectors. Alexandria Engineering Journal, 58(3), 901–908. doi:10.1016/j.aej.2019.08.005.
Daniel Ronald Joseph, J., Prabakar, J., & Alagusundaramoorthy, P. (2019). Experimental studies on through-thickness shear behavior of EPS based precast concrete sandwich panels with truss shear connectors. Composites Part B: Engineering, 166, 446–456. doi:10.1016/j.compositesb.2019.02.030.
Benayoune, A., Samad, A. A. A., Abang Ali, A. A., & Trikha, D. N. (2007). Response of pre-cast reinforced composite sandwich panels to axial loading. Construction and Building Materials, 21(3), 677–685. doi:10.1016/j.conbuildmat.2005.12.011.
Tomlinson, D., & Fam, A. (2016). Combined Loading Behavior of Basalt FRP–Reinforced Precast Concrete Insulated Partially-Composite Walls. Journal of Composites for Construction, 20(3), 1–14. doi:10.1061/(asce)cc.1943-5614.0000611.
Woltman, G., Noel, M., & Fam, A. (2017). Experimental and numerical investigations of thermal properties of insulated concrete sandwich panels with fiberglass shear connectors. Energy and Buildings, 145, 22–31. doi:10.1016/j.enbuild.2017.04.007.
Tomlinson, D. G., Teixeira, N., & Fam, A. (2016). New Shear Connector Design for Insulated Concrete Sandwich Panels Using Basalt Fiber-Reinforced Polymer Bars. Journal of Composites for Construction, 20(4), 1–13. doi:10.1061/(asce)cc.1943-5614.0000662.
Rajeshwaran, R., & Logeshwari, J. (2023). Experimental investigation on performance of sandwich wall infill in framed structure. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.477.
Ma, Q., Rejab, M. R. M., Abu Hassan, S., Hu, H., Azeem, M., & Yunus Nasution, A. (2023). Impact behaviour of spherical-roof contoured-core (SRCC) sandwich panel under the low-velocity impact (LVI): A numerical investigation. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.339.
Frankl, B. A., Lucier, G. W., Hassan, T. K., & Rizkalla, S. H. (2011). Behavior of precast, prestressed concrete sandwich wall panels reinforced with CFRP shear grid. PCI Journal, 56(2), 42–54. doi:10.15554/pcij.03012011.42.54.
Kazem, H., Bunn, W. G., Seliem, H. M., Rizkalla, S. H., & Gleich, H. (2015). Durability and long term behavior of FRP/foam shear transfer mechanism for concrete sandwich panels. Construction and Building Materials, 98, 722–734. doi:10.1016/j.conbuildmat.2015.08.105.
De Luca, F., Verderame, G. M., Gómez-Martínez, F., & Pérez-García, A. (2014). The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake. Bulletin of Earthquake Engineering, 12(5), 1999–2026. doi:10.1007/s10518-013-9500-1.
Dehghani, A., & Nateghi, E. F. (2010). Experimental results and conclusions obtained on the masonry-infilled concrete frames strengthened by CFRP. 14th European Conference on Earthquake Engineering, 30 August-3 September, 2010, Ohrid, Republic of Macedonia.
CoDyre, L., Mak, K., & Fam, A. (2018). Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities. Journal of Sandwich Structures and Materials, 20(5), 595–616. doi:10.1177/1099636216667658.
Zhang, H., Fang, W. Z., Li, Y. M., & Tao, W. Q. (2017). Experimental study of the thermal conductivity of polyurethane foams. Applied Thermal Engineering, 115, 528–538. doi:10.1016/j.applthermaleng.2016.12.057.
Steineck, S., & Lange, J. (2023). Influence of Temperature on the Behavior of Sandwich Panels. Ce/Papers, 6(3–4), 16–21. doi:10.1002/cepa.2305.
Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Akiya, T., & Takamatsu, T. (2003). Internally heat-integrated distillation columns: a review. Chemical Engineering Research and Design, 81(1), 162-177. doi:10.1205/026387603321158320.
Wang, Y., Yang, J., & Chen, Z. (2020). Insulation performance analysis of novel higherature vacuum insulated panels with 2D and 2.5D braided structures. Materials Research Express, 7(1). doi:10.1088/2053-1591/ab6ad4.
de Sousa, C., Barros, J. A. O., Ramôa Correia, J., & Valente, T. D. S. (2021). Development of sandwich panels for multi-functional strengthening of RC buildings: Characterization of constituent materials and shear interaction of panel assemblies. Construction and Building Materials, 267, 120849. doi:10.1016/j.conbuildmat.2020.120849.
Muthukumar, S., Thirumurugan, V., & Satyanarayanan, K. S. (2016). The stiffness behaviour of infilled frames on the influence of different infill and interface materials under static loading. Disaster Advances, 9(5), 13–17.
DOI: 10.28991/CEJ-2024-010-01-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Syed Abdul Rahman S
This work is licensed under a Creative Commons Attribution 4.0 International License.