Artificial Intelligence Models for Predicting the Compressive Strength of Geopolymer Cements
Abstract
Â
Doi: 10.28991/CEJ-SP2024-010-03
Full Text: PDF
Keywords
References
Handayani, L., Aprilia, S., Abdullah, Rahmawati, C., Bakri, A. M. M. Al, Aziz, I. H., & Azimi, E. A. (2021). Synthesis of Sodium Silicate from Rice Husk Ash as an Activator to Produce Epoxy-Geopolymer Cement. Journal of Physics: Conference Series, 1845(1), 1–8,. doi:10.1088/1742-6596/1845/1/012072.
Ahmad, J., Zhou, Z., & MartÃnez-GarcÃa, R. (2022). A study on the microstructure and durability performance of rubberized concrete with waste glass as binding material. Journal of Building Engineering, 49(January), 104054. doi:10.1016/j.jobe.2022.104054.
Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V., & Chindaprasirt, P. (2020). Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241. doi:10.1016/j.conbuildmat.2020.118143.
Rahmawati, C., Handayani, L., Muhtadin, Faisal, M., Zardi, M., Sapuan, S. M., Hadi, A. E., Ahmad, J., & Isleem, H. F. (2023). Optimization of Mortar Compressive Strength Prepared with Waste Glass Aggregate and Coir Fiber Addition Using Response Surface Methodology. Journal of Renewable Materials, 11(10), 3751–3767. doi:10.32604/jrm.2023.028987.
Opiso, E. M., Tabelin, C. B., Maestre, C. V., Aseniero, J. P. J., Park, I., & Villacorte-Tabelin, M. (2021). Synthesis and characterization of coal fly ash and palm oil fuel ash modified artisanal and small-scale gold mine (ASGM) tailings based geopolymer using sugar mill lime sludge as Ca-based activator. Heliyon, 7(4), 6654. doi:10.1016/j.heliyon.2021.e06654.
Naskar, S., & Chakraborty, A. K. (2016). Effect of nano materials in geopolymer concrete. Perspectives in Science, 8, 273–275. doi:10.1016/j.pisc.2016.04.049.
Alvee, A. R., Malinda, R., Akbar, A. M., Ashar, R. D., Rahmawati, C., Alomayri, T., Raza, A., & Shaikh, F. U. A. (2022). Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Studies in Construction Materials, 16, 792. doi:10.1016/j.cscm.2021.e00792.
Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S., & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials and Design, 55, 58–65. doi:10.1016/j.matdes.2013.09.049.
Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2016). Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Construction and Building Materials, 123, 541–552. doi:10.1016/j.conbuildmat.2016.07.049.
Roopchund, R., Andrew, J., & Sithole, B. (2022). Using cellulose nanocrystals to improve the mechanical properties of fly ash-based geopolymer construction materials. Engineering Science and Technology, an International Journal, 25, 100989. doi:10.1016/j.jestch.2021.04.008.
Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T. B., Amin, A., Ahmad, J., & Isleem, H. F. (2022). Mechanical properties and fracture parameters of geopolymers based on cellulose nanocrystals from Typha sp. fibers. Case Studies in Construction Materials, 17, e01498. doi:10.1016/j.cscm.2022.e01498.
Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T. B., & Ahmad, I. (2022). Preparation and Characterization of Cellulose Nanocrystals from Typha sp. as a Reinforcing Agent. Journal of Natural Fibers, 19(13), 6182–6195. doi:10.1080/15440478.2021.1904486.
Lazorenko, G., Kasprzhitskii, A., Mischinenko, V., & Kruglikov, A. (2022). Fabrication and characterization of metakaolin-based geopolymer composites reinforced with cellulose nanofibrils. Materials Letters, 308, 131146. doi:10.1016/j.matlet.2021.131146.
Rocha Ferreira, S., Ukrainczyk, N., Defáveri do Carmo e Silva, K., Eduardo Silva, L., & Koenders, E. (2021). Effect of microcrystalline cellulose on geopolymer and Portland cement pastes mechanical performance. Construction and Building Materials, 288, 123053. doi:10.1016/j.conbuildmat.2021.123053.
Ma, W., Qin, Y., Li, Y., Chai, J., Zhang, X., Ma, Y., & Liu, H. (2020). Mechanical properties and engineering application of cellulose fiber-reinforced concrete. Materials Today Communications, 22, 100818. doi:10.1016/j.mtcomm.2019.100818.
Balea, A., Fuente, E., Blanco, A., & Negro, C. (2019). Nanocelluloses: Natural-based materials for fiber- reinforced cement composites. A critical review. Polymers, 11(3). doi:10.3390/polym11030518.
da Gloria, M. Y. R., & Toledo Filho, R. D. (2021). Innovative sandwich panels made of wood bio-concrete and sisal fiber reinforced cement composites. Construction and Building Materials, 272, 121636. doi:10.1016/j.conbuildmat.2020.121636.
Xie, X., Zhou, Z., Jiang, M., Xu, X., Wang, Z., & Hui, D. (2015). Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Composites Part B: Engineering, 78, 153–161. doi:10.1016/j.compositesb.2015.03.086.
Fu, T., Moon, R. J., Zavattieri, P., Youngblood, J., & Weiss, W. J. (2017). Cellulose nanomaterials as additives for cementitious materials. Cellulose-Reinforced Nanofibre Composites, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-100957-4.00020-6.
Fiore, V., Scalici, T., & Valenza, A. (2014). Characterization of a new natural fiber from Arundo Donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 106(1), 77–83. doi:10.1016/j.carbpol.2014.02.016.
Alvee, A. R., Malinda, R., Akbar, A. M., Ashar, R. D., Rahmawati, C., Mulyaningsih, S., & Putri, L. D. (2023). Influence of nanosilica and crystalline admixture on the short-term behaviour of buried underground geopolymer paste. AIP Conference Proceedings. doi:10.1063/5.0109331.
Rahmawati, C., Aprilia, S., Saidi, T., Aulia, T. B., & Hadi, A. E. (2021). The effects of nanosilica on mechanical properties and fracture toughness of geopolymer cement. Polymers, 13(13), 2178. doi:10.3390/polym13132178.
Hou, P., Kawashima, S., Kong, D., Corr, D. J., Qian, J., & Shah, S. P. (2013). Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Composites Part B: Engineering, 45(1), 440–448. doi:10.1016/j.compositesb.2012.05.056.
Singh, L. P., Bhattacharyya, S. K., & Ahalawat, S. (2012). Preparation of size controlled silica nano particles and its functional role in cementitious system. Journal of Advanced Concrete Technology, 10(11), 345–352. doi:10.3151/jact.10.345.
Jalal, M., Mansouri, E., Sharifipour, M., & Pouladkhan, A. R. (2012). Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Materials and Design, 34, 389–400. doi:10.1016/j.matdes.2011.08.037.
Korniejenko, K., Frączek, E., Pytlak, E., & Adamski, M. (2016). Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers. Procedia Engineering, 151, 388–393. doi:10.1016/j.proeng.2016.07.395.
Correia, E. A., Torres, S. M., Alexandre, M. E. O., Gomes, K. C., Barbosa, N. P., & Barros, S. D. E. (2013). Mechanical performance of natural fibers reinforced geopolymer composites. Materials Science Forum, 758, 139–145. doi:10.4028/www.scientific.net/MSF.758.139.
Chen, R., Ahmari, S., & Zhang, L. (2014). Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. Journal of Materials Science, 49(6), 2548–2558. doi:10.1007/s10853-013-7950-0.
Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. (2016). Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. International Journal of Sustainable Built Environment, 5(2), 355–369. doi:10.1016/j.ijsbe.2016.09.003.
Behfarnia, K., & Khademi, F. (2017). A comprehensive study on the concrete compressive strength estimation using artificial neural network and adaptive neuro-fuzzy inference system. Iran University of Science & Technology, 7(1), 71-80.
Bagheri, A., Nazari, A., & Sanjayan, J. (2019). The use of machine learning in boron-based geopolymers: Function approximation of compressive strength by ANN and GP. Measurement: Journal of the International Measurement Confederation, 141, 241–249. doi:10.1016/j.measurement.2019.03.001.
McElroy, P. D., Bibang, H., Emadi, H., Kocoglu, Y., Hussain, A., & Watson, M. C. (2021). Artificial neural network (ANN) approach to predict unconfined compressive strength (UCS) of oil and gas well cement reinforced with nanoparticles. Journal of Natural Gas Science and Engineering, 88, 103816. doi:10.1016/j.jngse.2021.103816.
Atoyebi, O. D., Awolusi, T. F., & Davies, I. E. E. (2018). Artificial neural network evaluation of cement-bonded particle board produced from red iron wood (Lophira alata) sawdust and palm kernel shell residues. Case Studies in Construction Materials, 9, 185. doi:10.1016/j.cscm.2018.e00185.
Rahman, S. K., & Al-Ameri, R. (2023). Structural assessment of Basalt FRP reinforced self-compacting geopolymer concrete using artificial neural network (ANN) modelling. Construction and Building Materials, 397, 132464. doi:10.1016/j.conbuildmat.2023.132464.
Verma, N. K., Meesala, C. R., & Kumar, S. (2023). Developing an ANN prediction model for compressive strength of fly ash-based geopolymer concrete with experimental investigation. Neural Computing and Applications, 35(14), 10329–10345. doi:10.1007/s00521-023-08237-1.
Maheepala, M. M. A. L. N., Nasvi, M. C. M., Robert, D. J., Gunasekara, C., & Kurukulasuriya, L. C. (2023). Mix design development for geopolymer treated expansive subgrades using artificial neural network. Computers and Geotechnics, 161, 105534. doi:10.1016/j.compgeo.2023.105534.
Nazar, S., Yang, J., Amin, M. N., Khan, K., Ashraf, M., Aslam, F., Javed, M. F., & Eldin, S. M. (2023). Machine learning interpretable-prediction models to evaluate the slump and strength of fly ash-based geopolymer. Journal of Materials Research and Technology, 24, 100–124. doi:10.1016/j.jmrt.2023.02.180.
Igwe, K. C., Oyedum, O. D., Aibinu, A. M., Ajewole, M. O., & Moses, A. S. (2021). Application of artificial neural network modeling techniques to signal strength computation. Heliyon, 7(3), 6047. doi:10.1016/j.heliyon.2021.e06047.
Awoyera, P. O., Kirgiz, M. S., Viloria, A., & Ovallos-Gazabon, D. (2020). Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology, 9(4), 9016–9028. doi:10.1016/j.jmrt.2020.06.008.
Rahman, S. K., & Al-Ameri, R. (2022). Experimental and Artificial Neural Network-Based Study on the Sorptivity Characteristics of Geopolymer Concrete with Recycled Cementitious Materials and Basalt Fibres. Recycling, 7(4), 1–19. doi:10.3390/recycling7040055.
Khalaf, A. A., Kopecskó, K., & Merta, I. (2022). Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model. Polymers, 14(7). doi:10.3390/polym14071423.
Anwar, A., Wenyi, Y., Jing, L., Yanwei, W., Sun, B., Ameen, M., Shah, I., Chunsheng, L., Mustafa, Z. U., & Muhammad, Y. (2023). Predicting the compressive strength of cellulose nanofibers reinforced concrete using regression machine learning models. Cogent Engineering, 10(1), 1–26,. doi:10.1080/23311916.2023.2225278.
Yang, J., Fan, Y., Zhu, F., Ni, Z., Wan, X., Feng, C., & Yang, J. (2023). Machine learning prediction of 28-day compressive strength of CNT/cement composites with considering size effects. Composite Structures, 308, 116713. doi:10.1016/j.compstruct.2023.116713.
DOI: 10.28991/CEJ-SP2024-010-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Cut Rahmawati, Siti Aisyah, Sanusi Sanusi, Iqbal iqbal, M. Mufid Maulana, Erdiwansyah Erdiwansyah, Jawad Ahmad

This work is licensed under a Creative Commons Attribution 4.0 International License.