Concrete Strength and Aggregate Properties: In-Depth Analysis of Four Sources

Kamal Hosen, Md Abdulla Al Maruf, Rayhan Howlader, Kripendra Chakma, Md Rezars Mia

Abstract


In the field of Reinforced Concrete Construction, concrete emerges as the predominant and extensively employed construction material. Concrete comprises a solid, chemically inert granular substance called coarse aggregate (CA) bonded with cement and water. Compared to fine aggregate or cement, CA has a larger volume of concrete. By examining the characteristics of the coarse aggregate using various laboratory testing processes, the coarse aggregate may be properly used in concrete. Bangladesh is experiencing significant growth in its infrastructure industry due to the construction of mega projects nationwide. For the building of RCC in Bangladesh, coarse aggregate is mainly procured from two sources in Bangladesh, and another is imported from China. This study aims to develop a clear understanding of aggregate and concrete strength quality for different coarse aggregates and track changes in the appearance of CA from multiple sources in China and Bangladesh. Coarse aggregates were collected from four prominent sources: Jaflong and Bholaganj (Bangladesh), Shandong, and Jiangsu (China). ACV (aggregate crushing value), gradation, voids, and unit weight; AIV (aggregate impact value), absorption, specific gravity, and resistance to abrasion-induced deterioration; and Los Angeles (LA) machines’ impact tests have been conducted for all sources of CA. The concrete cylinder was made and tested for all sources of CA with the same ratio of cement, sand, and water to know the concrete strength for different CAs.

 

Doi: 10.28991/CEJ-2024-010-04-016

Full Text: PDF


Keywords


Unit-Weight; Concrete Strength; Coarse Aggregate; Fineness Modulus; Abrasion; Specific Gravity.

References


Nithurshan, M., & Elakneswaran, Y. (2023). A systematic review and assessment of concrete strength prediction models. Case Studies in Construction Materials, 18, 1830. doi:10.1016/j.cscm.2023.e01830.

Alghamdi, S. J. (2023). Determining the mix design method for normal strength concrete using machine learning. Journal of Umm Al-Qura University for Engineering and Architecture, 14(2), 95–104. doi:10.1007/s43995-023-00022-4.

Wang, L., Zhou, H., Zhang, J., Wang, Z., Zhang, L., & Nehdi, M. L. (2023). Prediction of concrete strength considering thermal damage using a modified strength-maturity model. Construction and Building Materials, 400, 132779. doi:10.1016/j.conbuildmat.2023.132779.

Naderi, M., & Kaboudan, A. (2021). Experimental study of the effect of aggregate type on concrete strength and permeability. Journal of Building Engineering, 37, 101928. doi:10.1016/j.jobe.2020.101928.

Barham, W. S., Taleb Obaidat, Y., & Wael Qublan, A. (2023). Effect of maximum coarse aggregate size upon shear strengthening of RC beams using NSM-CFRP strips. Structures, 53, 652–663. doi:10.1016/j.istruc.2023.04.070.

Kozul, R., & Darwin, D. (1997). Effects of Aggregate Type, Size and Content on Concrete Strength and Fracture Energy. SM Report No. 43, University of Kansas, Kansas, United States.

Ezeldin, A. S., & Aitcin, P. C. (1991). Effect of coarse aggregate on the behavior of normal and high-strength concretes. Cement, Concrete and Aggregates, 13(2), 121–124. doi:10.1520/cca10128j.

Giaccio, G., Rocco, C., Violini, D., Zappitelli, J., & Zerbino, R. (1992). High-strength concretes incorporating different coarse aggregates. ACI Materials Journal, 89(3), 242–246. doi:10.14359/2568.

Lee, G. C., Shih, T. S., & Chang, K. C. (1988). Mechanical Properties of Concrete at Low Temperature. Journal of Cold Regions Engineering, 2(1), 13–24. doi:10.1061/(asce)0887-381x(1988)2:1(13).

Giaccio, G., Rocco, C., & Zerbino, R. (1993). The fracture energy (GF) of high-strength concretes. Materials and Structures, 26(7), 381–386. doi:10.1007/BF02472938.

Talaat, A., Emad, A., Tarek, A., Masbouba, M., Essam, A., & Kohail, M. (2021). Factors affecting the results of concrete compression testing: A review. Ain Shams Engineering Journal, 12(1), 205–221. doi:10.1016/j.asej.2020.07.015.

Cordon, W., & Gillespie, A. (1963). Variables in Concrete Aggregates and Portland Cement Paste which Influence the Strength of Concrete. ACI Journal Proceedings, 60(8), 1029–1052. doi:10.14359/7889.

Li, Q., & Song, Z. (2023). Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model. Journal of Cleaner Production, 382, 135279. doi:10.1016/j.jclepro.2022.135279.

Beshr, H., Almusallam, A. A., & Maslehuddin, M. (2003). Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Construction and Building Materials, 17(2), 97–103. doi:10.1016/S0950-0618(02)00097-1.

BS 812-1:1975. (1975). Testing aggregates. Methods for determination of particle size and shape. British Standard, London, United Kingdom.

ASTM C136/C136M-14. (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates (2020). ASTM International, Pennsylvania, United States. doi:10.1520/C0136_C0136M-14.

ASTM C127-15. (2024). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate (2024). ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15

ASTM C29/C29M-97. (2017). Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0029_C0029M-17A.

ASTM C131-06. (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131_C0131M-20.

Cook, M. D., Ghaeezadah, A., & Ley, M. T. (2018). Impacts of Coarse-Aggregate Gradation on the Workability of Slip-Formed Concrete. Journal of Materials in Civil Engineering, 30(2). doi:10.1061/(asce)mt.1943-5533.0002126.

Taylor, P. C., & Voigt, G. F. (2007). Integrated materials and construction practices for concrete pavement: A state-of-the-practice manual, No. FHWA HIF-07-004, Federal Highway Administration, Washington, United States.

Shilstone, J. M. (1991). Performance specifications for concrete pavements. Concrete International, 13(12), 28–34.

Richardson, D. N. (2005). Aggregate Gradation Optimization--Literature Search. Technical Report RDT 05-001, University of Missouri, Columbia, United States.

Abrams, D. A. (1922). Proportioning Concrete Mixtures. ACI Journal Proceedings, 18(2), 174-181. doi:10.14359/15683.

Neville, A. M. (2011). Properties of concrete. Prentice Hall, New Jersey, United States.

Fuller, W. B., & Thompson, S. E. (1907). The Laws of Proportioning Concrete. Transactions of the American Society of Civil Engineers, 59(2), 67–143. doi:10.1061/taceat.0001979.

Harrison, P. J. (2004). For the ideal slab on ground mixture. Concrete international, 26(3), 49-55.

Day, K. W. (2006). Concrete Mix Design, Quality Control and Specification. CRC Press, London, United Kingdom. doi:10.4324/9780203967874.

Palassi, M., & Danesh, A. (2016). Relationships Between Abrasion/Degradation of Aggregate Evaluated from Various Tests and the Effect of Saturation. Rock Mechanics and Rock Engineering, 49(7), 2937–2943. doi:10.1007/s00603-015-0869-9.

Kahraman, S., & Fener, M. (2007). Predicting the Los Angeles abrasion loss of rock aggregates from the uniaxial compressive strength. Materials Letters, 61(26), 4861–4865. doi:10.1016/j.matlet.2007.06.003.

Mills-Beale, J., You, Z., Williams, R. C., & Dai, Q. (2009). Determining the specific gravities of coarse aggregates utilizing vacuum saturation approach. Construction and Building Materials, 23(3), 1316–1322. doi:10.1016/j.conbuildmat.2008.07.025.

Kandhal, P. S., Mallick, R. B., & Huner, M. (2000). Measuring bulk-specific gravity of fine aggregates: Development of new test method. Transportation Research Record, 1721(1721), 81–90. doi:10.3141/1721-10.

Roquier, G. (2023). Estimation of voids in a multi-sized mineral aggregate for asphalt mixture using the Theoretical Packing Density Model. Construction and Building Materials, 367, 130302. doi:10.1016/j.conbuildmat.2023.130302.

Hu, J., & Wang, K. (2007). Effects of size and uncompacted voids of aggregate on mortar flow ability. Journal of Advanced Concrete Technology, 5(1), 75–85. doi:10.3151/jact.5.75.

BS 812-112. (1990). Testing aggregates. Method for determination of aggregate impact value (AIV). British Standards Institution, 812-112.

Al-Harthi, A. A. (2001). A field index to determine the strength characteristics of crushed aggregate. Bulletin of Engineering Geology and the Environment, 60(3), 193–200. doi:10.1007/s100640100107.

Abdul Awal, A. S. M., Mohammadhosseini, H., & Hossain, M. Z. (2015). Strength, modulus of elasticity and shrinkage behaviour of concrete containing waste carpet fiber. International Journal of Geomate, 9(1), 1441–1446. doi:10.21660/2015.17.4345.

JTG E42-2005. (2005). Test methods of aggregate for highway engineering. Research Institute of Highway Ministry of Transport, Beijing, China.

BS 812-110. (1990). Testing Aggregates. Methods for Determination of Aggregate Crushing Value (ACV). British Standards Institution, London, United Kingdom.

Lajčin, D., & Guzoňová, V. (2023). Identification of Knowledge Management Barriers in Scientific R&D Projects in Czech Academic Environment. HighTech and Innovation Journal, 4(1), 19-36. doi:10.28991/HIJ-2023-04-01-02.

ASTM C805/C805M-18. (2019). Standard test method for Rebound Number of Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0805_C0805M-18.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Kamal Hosen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message