Optimization Studies of Iron Ore Tailings Powder and Natural Zeolite as Concrete Admixtures
Abstract
Doi: 10.28991/CEJ-2023-09-12-08
Full Text: PDF
Keywords
References
Yang, G., Deng, Y., & Wang, J. (2014). Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron ore tailing. Ceramics International, 40(5), 7401–7406. doi:10.1016/j.ceramint.2013.12.086.
U.S Geologicial Survey. (2020). Iron ore 2020. US Geological Survey, Mineral Commodity Summaries, U.S Geologicial Survey, Reston, United States.
Das, S. K., Kumar, S., & Ramachandrarao, P. (2000). Exploitation of iron ore tailing for the development of ceramic tiles. Waste Management, 20(8), 725–729. doi:10.1016/S0956-053X(00)00034-9.
Liu, Y., Du, F., Yuan, L., Zeng, H., & Kong, S. (2010). Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor. Journal of Hazardous Materials, 178(1–3), 999–1006. doi:10.1016/j.jhazmat.2010.02.038.
Du, Z., Ge, L., Ng, A. H. M., Zhu, Q., Horgan, F. G., & Zhang, Q. (2020). Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach. Science of the Total Environment, 717, 137125. doi:10.1016/j.scitotenv.2020.137125.
Shettima, A. U., Hussin, M. W., Ahmad, Y., & Mirza, J. (2016). Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Construction and Building Materials, 120, 72–79. doi:10.1016/j.conbuildmat.2016.05.095.
Prakash, S., Das, B., Mohapatra, B. K., & Venugopal, R. (2000). Recovery of iron values from iron ore slimes by selective magnetic coating. Separation Science and Technology, 35(16), 2651–2662. doi:10.1081/SS-100102361.
Peiravi, M., Dehghani, F., Ackah, L., Baharlouei, A., Godbold, J., Liu, J., Mohanty, M., & Ghosh, T. (2021). A Review of Rare-Earth Elements Extraction with Emphasis on Non-conventional Sources: Coal and Coal Byproducts, Iron Ore Tailings, Apatite, and Phosphate Byproducts. Mining, Metallurgy and Exploration, 38(1), 1–26. doi:10.1007/s42461-020-00307-5.
Yang, C., Cui, C., Qin, J., & Cui, X. (2014). Characteristics of the fired bricks with low-silicon iron tailings. Construction and Building Materials, 70, 36–42. doi:10.1016/j.conbuildmat.2014.07.075.
Mendes, B. C., Pedroti, L. G., Fontes, M. P. F., Ribeiro, J. C. L., Vieira, C. M. F., Pacheco, A. A., & Azevedo, A. R. G. d. (2019). Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks. Construction and Building Materials, 227, 116669. doi:10.1016/j.conbuildmat.2019.08.050.
Wu, D., Sun, W., Liu, S., & Qu, C. (2021). Effect of microwave heating on thermo-mechanical behavior of cemented tailings backfill. Construction and Building Materials, 266. doi:10.1016/j.conbuildmat.2020.121180.
Gu, X., Zhang, W., Zhang, X., Li, X., & Qiu, J. (2022). Hydration characteristics investigation of iron tailings blended ultra-high performance concrete: The effects of mechanical activation and iron tailings content. Journal of Building Engineering, 45, 103459. doi:10.1016/j.jobe.2021.103459.
Han, P. (2013). Experimental Study on High Silicon Iron Ore Tailings Effect on Concrete Workability and Compressive Strength. Northeastern University, Boston, United States.
Zhang, N., Tang, B., & Liu, X. (2021). Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Construction and Building Materials, 288, 123022. doi:10.1016/j.conbuildmat.2021.123022.
Seraj, S., Ferron, R. D., & Juenger, M. C. G. (2016). Calcining natural zeolites to improve their effect on cementitious mixture workability. Cement and Concrete Research, 85, 102–110. doi:10.1016/j.cemconres.2016.04.002.
Uzal, B., Turanli, L., Yücel, H., Göncüoǧlu, M. C., & Çulfaz, A. (2010). Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cement and Concrete Research, 40(3), 398–404. doi:10.1016/j.cemconres.2009.10.016.
Caputo, D., Liguori, B., & Colella, C. (2008). Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure. Cement and Concrete Composites, 30(5), 455–462. doi:10.1016/j.cemconcomp.2007.08.004.
Chan, S. Y. N., & Ji, X. (1999). Comparative study of the initial surface absorption and chloride diffusion of high-performance zeolite, silica fume and PFA concretes. Cement and Concrete Composites, 21(4), 293–300. doi:10.1016/S0958-9465(99)00010-4.
Ahmadi, B., & Shekarchi, M. (2010). Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32(2), 134–141. doi:10.1016/j.cemconcomp.2009.10.006.
Karakurt, C., & Topçu, I. B. (2011). Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25(4), 1789–1795. doi:10.1016/j.conbuildmat.2010.11.087.
Fernandez, R., Martirena, F., & Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41(1), 113–122. doi:10.1016/j.cemconres.2010.09.013.
Vigil De La Villa, R., Fernández, R., Rodríguez, O., García, R., Villar-Cociña, E., & Frías, M. (2013). Evolution of the pozzolanic activity of a thermally treated zeolite. Journal of Materials Science, 48(8), 3213–3224. doi:10.1007/s10853-012-7101-z.
Elkady, H., Serag, M. I., & Elfeky, M. S. (2013). Effect of nano silica de-agglomeration, and methods of adding super-plasticizer on the compressive strength, and workability of nano silica concrete. Civil and Environmental Research, 3(2), 21-34.
Masdeu, F., Carmona, C., Horrach, G., & Muñoz, J. (2021). Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials, 14(4), 998. doi:10.3390/ma14040998.
Yellishetty, M., Karpe, V., Reddy, E. H., Subhash, K. N., & Ranjith, P. G. (2008). Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Resources, Conservation and Recycling, 52(11), 1283–1289. doi:10.1016/j.resconrec.2008.07.007.
Hou, Y. (2014). Comparison of effect of iron tailing sand and natural sand on concrete properties. Key Engineering Materials, 599, 11–14. doi:10.4028/www.scientific.net/KEM.599.11.
Goyal, S., Singh, K., Hussain, A., & Singh, P. R. (2015). Study on partial replacement of sand with iron ore tailing on compressive strength of concrete. International Journal of Research in Engineering & Advanced Technology, 3(2), 243–248.
Vaičiukynienė, D., Skripkiūnas, G., Sasnauskas, V., & Daukšys, M. (2012). Cement compositions with modified hydrosodalite. Chemija, 23(3), 147–154.
Zhao, J., Wang, Q., Xu, G., Shi, Y., & Su, Y. (2023). Influence of macro-synthetic fiber on the mechanical properties of iron ore tailing concrete. Construction and Building Materials, 367, 130293. doi:10.1016/j.conbuildmat.2023.130293.
Zhang, Y., Li, Z., Gu, X., Nehdi, M. L., Marani, A., & Zhang, L. (2023). Utilization of iron ore tailings with high volume in green concrete. Journal of Building Engineering, 72, 106585. doi:10.1016/j.jobe.2023.106585.
Correia, J. R., De Brito, J., & Pereira, A. S. (2006). Effects on concrete durability of using recycled ceramic aggregates. Materials and Structures/Materiaux et Constructions, 39(2), 169–177. doi:10.1617/s11527-005-9014-7.
Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.
Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 33(10), 1607–1611. doi:10.1016/S0008-8846(03)00125-X.
Liu, K., Wang, S., Quan, X., Jing, W., Xu, J., Zhao, N., & Liu, B. (2022). Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycle’s resistance of concrete. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01472.
Xu, F., Wang, S., Li, T., Liu, B., Zhao, N., & Liu, K. (2021). The mechanical properties and resistance against the coupled deterioration of sulfate attack and freeze-thaw cycles of tailing recycled aggregate concrete. Construction and Building Materials, 269, 121273. doi:10.1016/j.conbuildmat.2020.121273.
Zhang, G. D., Zhang, X. Z., Zhou, Z. H., & Cheng, X. (2014). Preparation and properties of concrete containing iron tailings/manufactured sand as fine aggregate. Advanced Materials Research, 838–841, 152–155. doi:10.4028/www.scientific.net/AMR.838-841.152.
Singh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 20–32. doi:10.1016/j.resconrec.2012.12.006.
Krishna Kumar, P., & Chinnaraju, K. (2022). Utilization potentials of a nano bio-carbonate filler to mitigate alkali-aggregate reactivity of glass powder–foamed concrete. Canadian Journal of Civil Engineering, 49(10), 1569–1581. doi:10.1139/cjce-2022-0122.
Palaniappan, K. K., Komarasamy, C., & Murugan, S. (2022). Utilization of Cuttlebone as Filler in Hydrophobic Foam Mortar: A Technical and Economical Feasibility Study. Journal of Materials in Civil Engineering, 34(8), 4022191. doi:10.1061/(asce)mt.1943-5533.0004335.
Vejmelková, E., Koňáková, D., Kulovaná, T., Keppert, M., Žumár, J., Rovnaníková, P., Keršner, Z., Sedlmajer, M., & Černý, R. (2015). Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55, 259–267. doi:10.1016/j.cemconcomp.2014.09.013.
DOI: 10.28991/CEJ-2023-09-12-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mahmoud Al Khazaleh, Krishna Kumar P
This work is licensed under a Creative Commons Attribution 4.0 International License.