Improving CBR Parameter of Expansive Soil Using the Carbonate Precipitation Method with Tofu Waste as a Biocatalyst

Heriansyah Putra, Alfaris B. Arrazzaq, Raihan M. I. Hidayatullah, Maulina Lamuse, Fauzan R. Ananda, Angga Prayoga

Abstract


Expansive soil is problematic from an infrastructural perspective, including the subgrade of pavement construction. The high swelling and shrinkage of this soil promotes subgrade imbalance, resulting in severe pavement construction problems. One potential soil improvement method is the carbonate precipitation method; however, this method requires a catalyst. This research aims to evaluate the use of tofu waste as a biocatalyst in the carbonate precipitation method to improve expansive soil. Several variations of tofu waste reacted with reagents (urea and calcium chloride) as treatment solutions. Soil identification, hydrolysis, precipitation, Atterberg limits, California bearing ratio (CBR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) tests were performed. The results showed that the optimum tofu waste concentration was 40 g/L. The swelling ratio in the soil treated with carbonate decreased by 12.5%. The CBR value of the treated soil also increased by 23.9%. The SEM and XRD analysis results showed the formation of aragonite, calcite, and vaterite. Moreover, this study confirmed that tofu waste is a promising biocatalyst for carbonate precipitation.

 

Doi: 10.28991/CEJ-SP2023-09-013

Full Text: PDF


Keywords


CBR; Carbonate Precipitation; Expansive Soil; Swelling Ratio; Tofu Waste.

References


PUPR (2023). National Road Surface Conditions: Ministry of Public Works and Public Housing of Republic of Indonesia. Available online: https://data.pu.go.id/dataset/kondisi-permukaan-jalan-nasional (accessed on October 2023).

Ijaz, N., Ye, W., Rehman, Z. Ur, Ijaz, Z., & Junaid, M. F. (2023). New binary paper/wood industry waste blend for solidification/stabilisation of problematic soil subgrade: macro-micro study. Road Materials and Pavement Design, 24(5), 1215–1232. doi:10.1080/14680629.2022.2064905.

Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Ijaz, Z., & Rehman, Z. Ur. (2022). Strengthening potential of xanthan gum biopolymer in stabilizing weak subgrade soil. Clean Technologies and Environmental Policy, 24(9), 2719–2738. doi:10.1007/s10098-022-02347-5.

ESDM (2019). Atlas sebaran batu lempung bermasalah, Bandung: Ministry of Energy and Mineral Resources of the Republic of Indonesia. Available online: https://www.esdm.go.id/assets/media/content/content-atlas-sebaran-batu-lempung-bermasalah.pdf (accessed on October 2023).

Ikeagwuani, C. C., & Nwonu, D. C. (2019). Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 423–440. doi:10.1016/j.jrmge.2018.08.013.

Ali, M., Aziz, M., Hamza, M., & Madni, M. F. (2020). Engineering properties of expansive soil treated with polypropylene fibers. Geomechanics and Engineering, 22(3), 227–236. doi:10.12989/gae.2020.22.3.227.

Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104–110. doi:10.1016/j.clay.2014.03.017.

Suaryana, N. (2016). Performance evaluation of stone matrix asphalt using Indonesian natural rock asphalt as stabilizer. International Journal of Pavement Research and Technology, 9(5), 387-392. doi:10.1016/j.ijprt.2016.09.007.

Djellali, A., Houam, A., Saghafi, B., Hamdane, A., & Benghazi, Z. (2017). Static Analysis of Flexible Pavements over Expansive Soils. International Journal of Civil Engineering, 15(3), 391–400. doi:10.1007/s40999-016-0058-6.

Zada, U., Jamal, A., Iqbal, M., Eldin, S. M., Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S. (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials, 18, e01985. doi:10.1016/j.cscm.2023.e01985.

Aziz, M., Sheikh, F. N., Qureshi, M. U., Rasool, A. M., & Irfan, M. (2021). Experimental Study on Endurance Performance of Lime and Cement-Treated Cohesive Soil. KSCE Journal of Civil Engineering, 25(9), 3306–3318. doi:10.1007/s12205-021-2154-7.

Simatupang, M., Mangalla, L. K., Edwin, R. S., Putra, A. A., Azikin, M. T., Aswad, N. H., & Mustika, W. (2020). The mechanical properties of fly-ash-stabilized sands. Geosciences (Switzerland), 10(4), 132. doi:10.3390/geosciences10040132.

Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.

Kim, Y. sang, Tran, T. Q., Kang, G. o., & Do, T. M. (2019). Stabilization of a residual granitic soil using various new green binders. Construction and Building Materials, 223, 724–735. doi:10.1016/j.conbuildmat.2019.07.019.

Tran, T. Q., Kim, Y. S., Kang, G. O., Dinh, B. H., & Do, T. M. (2019). Feasibility of Reusing Marine Dredged Clay Stabilized by a Combination of By-Products in Coastal Road Construction. Transportation Research Record, 2673(12), 519–528. doi:10.1177/0361198119868196.

Soltani, A., Taheri, A., Khatibi, M., & Estabragh, A. R. (2017). Swelling potential of a stabilized expansive soil: a comparative experimental study. Geotechnical and Geological Engineering, 35, 1717-1744. doi:10.1007/s10706-017-0204-1.

Putra, H., & Yudhistira, I. (2022). Improvement of the California Bearing Ratio of Peat Soil Using Soybean Crude Urease Calcite Precipitation. Civil Engineering Journal (Iran), 8(11), 2411–2423. doi:10.28991/CEJ-2022-08-11-04.

Meisnnehr, D., Putra, H., & Yasuhara, H. (2021). Utilization of soybean powder as the additional material on calcite precipitation method for improving the strength of liquefiable soil. IOP Conference Series: Earth and Environmental Science, 622(1), 12029. doi:10.1088/1755-1315/622/1/012029.

Putra, H., Yasuhara, H., Erizal, Sutoyo, & Fauzan, M. (2020). Review of enzyme-induced calcite precipitation as a ground-improvement technique. Infrastructures, 5(8), 66. doi:10.3390/INFRASTRUCTURES5080066.

Putra, H., Erizal, Sutoyo, Simatupang, M., & Yanto, D. H. Y. (2021). Improvement of organic soil shear strength through calcite precipitation method using soybeans as bio-catalyst. Crystals, 11(9), 1–14. doi:10.3390/cryst11091044.

Pratama, G. B. S., Yasuhara, H., Kinoshita, N., & Putra, H. (2021). Application of soybean powder as urease enzyme replacement on EICP method for soil improvement technique. IOP Conference Series: Earth and Environmental Science, 622(1), 12035. doi:10.1088/1755-1315/622/1/012035.

Statistik Pertanian. (2018). Food Consumption Statistics. Center for Agricultural Data and Information System, Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian, Jakarta, Indonesia.

Mawardi, M., Sarjani, T. M., & Fadilah, F. (2019). Training on the Utilization of Tofu Drugs Waste as a Food Product Fit for Consumption in Meurandeh Dayah Village. Global Science Society: Jurnal Ilmiah Pengabdian Kepada Masyarakat, 1(1), 40-44.

Ministry of Health of Indonesia (2023). Tabel Komposisi Pangan Indonesia. Jakarta, Indonesia: Kemenkes RI, 2018. Available online: https://www.kemkes.go.id/id/home (accessed on May 2023).

ASTM D2487-06. (2010). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-06.

Rangan, P. R., & Arrang, A. T. (2021). Stabilisasi Tanah Lempung Ekspansif dengan Limbah Keramik. Journal Dynamic Saint, 5(2), 945–950. doi:10.47178/dynamicsaint.v5i2.1098. (In Indonesian).

Hangge, E. E., Bella, R. A., & Ullu, M. C. (2021). Utilization of fly ash for stabilization of expansive clay subgrade. Jurnal Teknik Sipil, 10(1), 89-102. (In Indonesian).

SNI 03-6795-2002. (2002). Test Method for Determining Expansive Soil. Badan Standardisasi Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).

Putra, H., Yasuhara, H., Kinoshita, N. E., & Sudibyo, T. (2018). Improving Shear Strength Parameters of Sandy Soil using Enzyme-Mediated Calcite Precipitation Technique. Civil Engineering Dimension, 20(2), 91–95. doi:10.9744/ced.20.2.91-95.

Sharma, A., & Ramkrishnan, R. (2016). Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspectives in Science, 8, 198-202. doi:10.1016/j.pisc.2016.03.017.

Pratama, E. M., Putra, H., & Syarif, F. (2021). Application of calcite precipitation method to increase the shear strength of peat soil. IOP Conference Series: Earth and Environmental Science, 871(1), 12058. doi:10.1088/1755-1315/871/1/012058.

ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.

Oktafiani, P. G., Putra, H., Erizal, & Yanto, D. H. Y. (2022). Application of technical grade reagent in soybean-crude urease calcite precipitation (SCU-CP) method for soil improvement technique. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103292. doi:10.1016/j.pce.2022.103292.

Akkerman, M., Rauh, V. M., Christensen, M., Johansen, L. B., Hammershøj, M., & Larsen, L. B. (2016). Effect of heating strategies on whey protein denaturation-Revisited by liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Dairy Science, 99(1), 152–166. doi:10.3168/jds.2015-9924.

Oktafiani, P. G., Putra, H., & Sutoyo, S. (2022). Pengaruh Dissolved Organic Carbon (DOC) pada Efektivitas Perbaikan Tanah Gambut dengan Metode Calcite Precipitation. Jurnal Aplikasi Teknik Sipil, 20(1), 109. doi:10.12962/j2579-891x.v20i1.9637.

Lofianda, L., Putra, H., Erizal, Sutoyo, & Yasuhara, H. (2021). Potentially of soybean as bio-catalyst in calcite precipitation methods for improving the strength of sandy soil. Civil Engineering and Architecture, 9(7), 2317–2325. doi:10.13189/cea.2021.090719.

Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423. doi:10.1080/01490450701436505.

Almajed, A., Khodadadi Tirkolaei, H., & Kavazanjian Jr, E. (2018). Baseline investigation on enzyme-induced calcium carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 144(11), 04018081. doi:10.1061/(ASCE)GT.1943-5606.000197.

Nagaraj, H. B., & Suresh, M. R. (2018). Influence of clay mineralogy on the relationship of CBR of fine-grained soils with their index and engineering properties. Transportation Geotechnics, 15, 29–38. doi:10.1016/j.trgeo.2018.02.004.

SNI 03-1732-1989. (1989). Procedures for Planning Highway Flexible Pavement Thickness Using Component Method Analysis. Badan Standardisasi Nasional Indonesia, Jakarta, Indonesia. (In Indonesian).

Direktorat Jenderal Bina Marga. (2017). Road Pavement Design Manual revision 201. Ministry of Public Works and Public Housing Jakarta, Jakarta, Indonesia. (In Indonesian).

Putra, H., Yasuhara, H., Kinoshita, N., & Hirata, A. (2017). Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals, 7(2), 59. doi:10.3390/cryst7020059.

Putra, H., Yasuhara, H., & Kinoshita, N. (2017). Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique. Geosciences (Switzerland), 7(3), 1–14. doi:10.3390/geosciences7030061.


Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Heriansyah Putra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message