Thrust Vector Control within a Geometric Sphere, and the Use of Euler's Tips to Create Jet Technology

Yuri A. Sazonov, Mikhail A. Mokhov, Inna V. Gryaznova, Victoria V. Voronova, Khoren A. Tumanyan, Egor I. Konyushkov

Abstract


This study aims to study the issues of choosing promising directions for the development of jet technology with the creation of energy-conserving technologies. The purpose of this article is to study the issues of choosing promising directions for the development of jet technology with the creation of energy-saving. Methodological approaches have been developed for solving inventive problems within the framework of training modern designers-inventors. A new patentable jet unit has been developed and presented, which makes it possible to control the thrust vector within a complete geometric sphere (when the thrust vector is capable of deviating to any angle ranging from +180° to -180°). For the first time, demonstration versions of a nozzle apparatus capable of realizing such flow reversals through annular channels are shown. The results of computer modeling of nozzle devices are focused on energy, production, and processing of hydrocarbons when distributing energy flows at process facilities. The individual results of the ongoing work can also be used in other industries, for instance, in the creation of small-sized high-speed unmanned vehicles for search and rescue operations. Proposals have been prepared to improve the methodology for solving inventive problems as part of the development of Leonard Euler’s ideas.

 

Doi: 10.28991/CEJ-2023-09-10-011

Full Text: PDF


Keywords


CFD; Energy Conservation; Design; Nozzle Apparatus; Thrust Vector; Computer Simulation; Hydrodynamic Control.

References


Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2021). Development and prototyping of jet systems for advanced turbomachinery with mesh rotor. Emerging Science Journal, 5(5), 775–801. doi:10.28991/esj-2021-01311.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2022). Designing Mesh Turbomachinery with the Development of Euler’s Ideas and Investigating Flow Distribution Characteristics. Civil Engineering Journal (Iran), 8(11), 2598–2627. doi:10.28991/CEJ-2022-08-11-017.

Sazonov, Y. A., Mokhov, M. A., Gryaznova, I. V., Voronova, V. V., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2022). Computational Fluid Dynamics (CFD) Simulation of Mesh Jet Devices for Promising Energy-Saving Technologies. Civil Engineering Journal (Iran), 8(12), 2749–2767. doi:10.28991/CEJ-2022-08-12-06.

Sazonov, Y. A., Mokhov, M. A., Tumanyan, K. A., Frankov, M. A., & Balaka, N. N. (2020). Prototyping mesh turbine with the jet control system. Periódico Tchê Química, 17, 1160-1175. doi:10.52571/ptq.v17.n36.2020.1176_periodico36_pgs_1161_1175.pdf.

Morozov, A. V., Nazarov, E. A., & Pokotilo, S. A. (2022). The patent for invention No. 2777459 of the Russian Federation. Method of creating aerodynamic forces on an aircraft wing and a device for its implementation. Moscow, Russia.

Friedmann, G. (1952). US Patent 2623474. Injection mixer. United States Patent Office, Alexandria, United States.

Wheatley, M. J. (1997). Apparatus for energy transfer. UK Patent Application, GB No: 2310005, London, United Kingdom.

Jing, Q., Xu, W., Ye, W., & Li, Z. (2022). The Relationship between Contraction of the Ejector Mixing Chamber and Supersonic Jet Mixing Layer Development. Aerospace, 9(9), 469. doi:10.3390/aerospace9090469.

Tatarkanov, A. A. B., Alexandrov, I. A., & Olejnik, A. V. (2020). Evaluation of the contact surface parameters at knurling finned heat-exchanging surface by knurls at ring blanks. Periodico Tche Quimica, 17(36), 372-389. doi:10.52571/ptq.v17.n36.2020.387 _periodico36_pgs_372_389.pdf.

Yan, J., Shu, Y., Jiang, J., & Wen, H. (2023). Optimization of Two-Phase Ejector Mixing Chamber Length under Varied Liquid Volume Fraction. Entropy, 25(1), 7. doi:10.3390/e25010007.

Aidoun, Z., Ameur, K., Falsafioon, M., & Badache, M. (2019). Current advances in ejector modeling, experimentation and applications for refrigeration and heat pumps. Part 1: Single-phase ejectors. Inventions, 4(1), 15. doi:10.3390/inventions4010015.

Azarova, O. A. (2023). High Speed Flows. Fluids, 8(4), 109. doi:10.3390/fluids8040109.

Resta, E., Marsilio, R., & Ferlauto, M. (2021). Thrust vectoring of a fixed axisymmetric supersonic nozzle using the shock-vector control method. Fluids, 6(12), 441. doi:10.3390/fluids6120441.

Ferlauto, M., Ferrero, A., Marsicovetere, M., & Marsilio, R. (2021). Differential throttling and fluidic thrust vectoring in a linear aerospike. International Journal of Turbomachinery, Propulsion and Power, 6(2), 8. doi:10.3390/ijtpp6020008.

Sahbon, N., Jacewicz, M., Lichota, P., & Strzelecka, K. (2023). Path-Following Control for Thrust-Vectored Hypersonic Aircraft. Energies, 16(5), 2501. doi:10.3390/en16052501.

Skaggs, B. D. (1997). U.S. Patent No. 5,628,623: Fluid ejector and ejection method. United States Patent Office, Alexandria, United States.

Dodge, A. Y. (1995). U.S. Patent No. 3,188,976. Jet pump. United States Patent Office, Alexandria, United States.

Samuel, L. (1968). U.S. Patent No. 3,385,030. Process for scrubbing a gas stream containing particulate material. United States Patent Office, Alexandria, United States.

Bayles, W. H., & Nash, B. C. (1962). U.S. Patent No. 3,064,878: Method and apparatus for high performance evacuation system. United States Patent Office, Alexandria, United States.

Volker, M., & Sausner, A. (2018). U.S. Patent No. 10,072,674: Suction jet pump. United States Patent Office, Alexandria, United States.

Chanut, P. L. J. (1964). U.S. Patent No. 3,013,494. Guided Missile. United States Patent Office, Alexandria, United States.

Sota Jr, C. G., Callis, G. J., & Masse, R. K. (2007). U.S. Patent No. 7,155,898: Thrust vector control system for a plug nozzle rocket engine. United States Patent Office, Alexandria, United States.

Aerospaceweb.org (2018). Missile Control Systems. Available online: http://www.aerospaceweb.org/question/weapons/q0158.shtml (accessed on September 2023).

Dunbar, W. B., Milam, M. B., Franz, R., & Murray, R. M. (2002). Model predictive control of a thrust-vectored flight control experiment. IFAC Proceedings Volumes, 35(1), 355-360. doi:10.3182/20020721-6-ES-1901.00965.

Bailey, J. M. (1982). U.S. Patent No. 4,355,949: Control system and nozzle for impulse turbines. United States Patent Office, Alexandria, United States.

Hickerson, F. R. (1965). U.S. Patent No. 3,192,714: Variable thrust rocket engine incorporating thrust vector control. United States Patent Office, Alexandria, United States.

Kinsey, L. E., & Cavalleri, R. J. (2013). U.S. Patent No. 8,387,360: Integral thrust vector and roll control system. United States Patent Office, Alexandria, United States.

Plumpe Jr., William, H. (2003). U. S. Patent No. 6,622,472: Apparatus and method for thrust vector control. United States Patent Office, Alexandria, United States.

Cican, G., Frigioescu, T. F., Crunteanu, D. E., & Cristea, L. (2023). Micro Turbojet Engine Nozzle Ejector Impact on the Acoustic Emission, Thrust Force and Fuel Consumption Analysis. Aerospace, 10(2), 162. doi:10.3390/aerospace10020162.

Bhadran, A., Manathara, J. G., & Ramakrishna, P. A. (2022). Thrust Control of Lab-Scale Hybrid Rocket Motor with Wax-Aluminum Fuel and Air as Oxidizer. Aerospace, 9(9), 474. doi:10.3390/aerospace9090474.

Liu, B., Gao, Y., Gao, L., Zhang, J., Zhu, Y., Zang, X., & Zhao, J. (2022). Design and Experimental Study of a Turbojet VTOL Aircraft with One-Dimensional Thrust Vectoring Nozzles. Aerospace, 9(11), 678. doi:10.3390/aerospace9110678.

Wang, C., Lu, H., Kong, X., Wang, S., Ren, D., & Huang, T. (2023). Effects of Pulsed Jet Intensities on the Performance of the S-Duct. Aerospace, 10(2), 184. doi:10.3390/aerospace10020184.

Ahmed, F., Eames, I., Moeendarbary, E., & Azarbadegan, A. (2021). High-Strouhal-number pulsatile flow in a curved pipe. Journal of Fluid Mechanics, 923, 15. doi:10.1017/jfm.2021.553.

Brethouwer, G. (2022). Turbulent flow in curved channels. Journal of Fluid Mechanics, 931, 21. doi:10.1017/jfm.2021.953.

Svorcan, J., Andrić, J., Čantrak, Đ., & Ivanov, T. (2022). Special Collection on advanced practices in aerospace and energy engineering. Advances in Mechanical Engineering, 14(10), 10. doi:10.1177/16878132221125578.

Mitridis, D., Kapsalis, S., Terzis, D., & Panagiotou, P. (2023). An Evaluation of Fixed-Wing Unmanned Aerial Vehicle Trends and Correlations with Respect to NATO Classification, Region, EIS Date and Operational Specifications. Aerospace, 10(4), 382. doi:10.3390/aerospace10040382.

Shahzad, M. M., Saeed, Z., Akhtar, A., Munawar, H., Yousaf, M. H., Baloach, N. K., & Hussain, F. (2023). A Review of Swarm Robotics in a NutShell. Drones, 7(4), 269. doi:10.3390/drones7040269.

Pesci, A., Teza, G., & Fabris, M. (2023). Editorial of Special Issue “Unconventional Drone-Based Surveying.” Drones, 7(3), 175. doi:10.3390/drones7030175.

Dinelli, C., Racette, J., Escarcega, M., Lotero, S., Gordon, J., Montoya, J., Dunaway, C., Androulakis, V., Khaniani, H., Shao, S., Roghanchi, P., & Hassanalian, M. (2023). Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review. Drones, 7(2), 136. doi:10.3390/drones7020136.

Wu, J., Wang, H., Li, S., & Liu, S. (2023). Distributed Adaptive Path-Following Control for Distance-Based Formation of Fixed-Wing UAVs under Input Saturation. Aerospace, 10(9), 768. doi:10.3390/aerospace10090768.

Zhu, D., Chen, Z., Xie, X., & Chen, J. (2023). Discretization Method to Improve the Efficiency of Complex Airspace Operation. Aerospace, 10(9), 780. doi:10.3390/aerospace10090780.

Wu, X., Zhang, M., Wang, X., Zheng, Y., & Yu, H. (2023). Hierarchical Task Assignment for Multi-UAV System in Large-Scale Group-to-Group Interception Scenarios. Drones, 7(9), 560. doi:10.3390/drones7090560.

Fitrikananda, B. P., Jenie, Y. I., Sasongko, R. A., & Muhammad, H. (2023). Risk Assessment Method for UAV’s Sense and Avoid System Based on Multi-Parameter Quantification and Monte Carlo Simulation. Aerospace, 10(9), 781. doi:10.3390/aerospace10090781.

Baspinar, B. (2023). Robust Controller Design for a Generic Helicopter Model: An AI-Aided Application for Terrain Avoidance. Aerospace, 10(9), 757. doi:10.3390/aerospace10090757.

Bhamu, N., Verma, H., Dixit, A., Bollard, B., & Sarangi, S. R. (2023). SmrtSwarm: A Novel Swarming Model for Real-World Environments. Drones, 7(9), 573. doi:10.3390/drones7090573.

Li, J., Shen, D., Yu, F., & Zhang, R. (2023). Air Channel Planning Based on Improved Deep Q-Learning and Artificial Potential Fields. Aerospace, 10(9), 758. doi:10.3390/aerospace10090758.

Petrovich, G. P. (2002). Philosophy of technology and creativity of P. K. Engelmeyer: Historical and philosophical analysis. PhD Thesis, Ural State Economic University Press, Yekaterinburg, Russia.

Altshuller, G. S. (2011). To find an idea: An introduction to TRIZ - the theory of inventive problem solving. Alpina Publisher, Moscow, Russia.

Kurdyumov, S. P., & Knyazeva, E. N. (2021). Future and its horizons: synergetic methodology in forecasting. Synergetics and Scientific Forecasting, Moscow, Russia. (In Russian).

Raskin, N.M. (1958). Euler’s Questions of Technique. Leonhard Euler. Collection of articles in honor of the 250th anniversary of the birth, presented to the Academy of Sciences of the USSR, 499–556, Publishing House of the Academy of Sciences of the USSR, Moscow, Russia.

Ackeret, J. (1944). Investigation of a water turbine built according to Euler's proposals (1754). Swiss Construction Newspaper, 123/124. Available online: https://arxiv.org/ftp/arxiv/papers/2108/2108.12048.pdf (accessed on July 2023).

Voronov, Y. P. (2010). Foresight as a tool. Institute of Economics and Industrial Engineering, Siberian Branch of RAS Publication, Novosibirsk, Russia. Available online: https://spkurdyumov.ru/forecasting/budushhee-i-ego-gorizonty/ (accessed on June 2023).


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-10-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Yuri Apollonievich Sazonov, Mikhail Albertovich Mokhov, Inna Vladimirovna Gryaznova, Victoria Vasilyevna Voronova, Khoren Arturovich Tumanyan, Egor Ilyich Konyushkov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message