Flexural Behavior of Repaired Reinforced Concrete Beams Due to Corrosion of Steel Reinforcement Using Grouting and FRP Sheet Strengthening
Abstract
Doi: 10.28991/CEJ-2024-010-01-014
Full Text: PDF
Keywords
References
Mocová, K. A., Sackey, L. N. A., & Renkerová, P. (2019). Environmental Impact of Concrete and Concrete-Based Construction Waste Leachates. IOP Conference Series: Earth and Environmental Science, 290, 012023. doi:10.1088/1755-1315/290/1/012023.
Huo, W., Zhu, Z., Chen, W., Zhang, J., Kang, Z., Pu, S., & Wan, Y. (2021). Effect of synthesis parameters on the development of unconfined compressive strength of recycled waste concrete powder-based geopolymers. Construction and Building Materials, 292. doi:10.1016/j.conbuildmat.2021.123264.
Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. Journal of Cleaner Production, 186, 262–281. doi:10.1016/j.jclepro.2018.03.085.
Fitriani, H., & Ajayi, S. (2023). Barriers to sustainable practices in the Indonesian construction industry. Journal of Environmental Planning and Management, 66(10), 2028–2050. doi:10.1080/09640568.2022.2057281.
Goyal, A., Pouya, H. S., Ganjian, E., & Claisse, P. (2018). A Review of Corrosion and Protection of Steel in Concrete. Arabian Journal for Science and Engineering, 43(10), 5035–5055. doi:10.1007/s13369-018-3303-2.
Sun, H., Zou, H., Li, X., Memon, S. A., Yuan, B., Xing, F., Zhang, X., & Ren, J. (2022). Combined Effects of Sulfate and Chloride Attack on Steel Reinforced Mortar under Drying–Immersion Cycles. Buildings, 12(8), 1252. doi:10.3390/buildings12081252.
Zhang, X., Zhang, Y., Liu, B., Liu, B., Wu, W., & Yang, C. (2021). Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams. Engineering Failure Analysis, 127. doi:10.1016/j.engfailanal.2021.105538.
Alwash, N. A., Kadhum, M. M., & Mahdi, A. M. (2019). Rehabilitation of corrosion-defected RC beam-column members using patch repair technique. Buildings, 9(5), 120. doi:10.3390/buildings9050120.
Gergess, A. N., Shaikh Al Shabab, M., & Massouh, R. (2020). Repair of Severely Damaged Reinforced Concrete Beams with High-Strength Cementitious Grout. Transportation Research Record, 2674(6), 372–384. doi:10.1177/0361198120919116.
Jung, J. S., Lee, B. Y., & Lee, K. S. (2019). Experimental Study on the Structural Performance Degradation of Corrosion-Damaged Reinforced Concrete Beams. Advances in Civil Engineering, 2019, 9562574. doi:10.1155/2019/9562574.
Bin Jumaat, M. Z., Kabir, M., & Obaydullah, M. (2010). Structural performance of reinforced concrete beams repairing from spalling. European Journal of Scientific Research, 45(1), 89-102.
Iskhakov, I., Ribakov, Y., Holschemacher, K., & Mueller, T. (2013). High performance repairing of reinforced concrete structures. Materials & Design, 44, 216-222. doi:10.1016/j.matdes.2012.07.041.
Canaval, J. H., Silva, T. J. Da, & Santos, A. C. (2018). Experimental study of RC beams strengthened for bending by reinforced grout layer and connectors. Revista IBRACON de Estruturas e Materiais, 11(4), 810–833. doi:10.1590/s1983-41952018000400009.
Peng, G., Niu, D., Hu, X., Zhong, S., & Huang, D. (2022). Experimental and theoretical study on the flexural behavior of RC beams strengthened with cementitious grout. Engineering Structures, 267, 114713. doi:10.1016/j.engstruct.2022.114713.
Dangwal, S., & Singh, H. (2023). Seismic performance of corroded non-seismically and seismically detailed RC beam-column joints rehabilitated with High Strength Fiber Reinforced Concrete. Engineering Structures, 291, 116481. doi:10.1016/j.engstruct.2023.116481.
Azam, R. (2016). Behaviour of Shear-Critical Reinforced Concrete Beams Strengthened with Fiber Reinforced Cementitious Mortar. PhD Thesis, University of Waterloo, Waterloo, Canada.
Xie, F., Tian, W., Diez, P., Zlotnik, S., & Gonzalez, A. G. (2023). Bonding Performance of Glass Fiber-Reinforced Polymer Bars under the Influence of Deformation Characteristics. Polymers, 15(12), 2604. doi:10.3390/polym15122604.
Yang, J., Haghani, R., Blanksvärd, T., & Lundgren, K. (2021). Experimental study of FRP-strengthened concrete beams with corroded reinforcement. Construction and Building Materials, 301. doi:10.1016/j.conbuildmat.2021.124076.
Masoud, S., & Soudki, K. (2006). Evaluation of corrosion activity in FRP repaired RC beams. Cement and Concrete Composites, 28(10), 969–977. doi:10.1016/j.cemconcomp.2006.07.013.
Al-Mashgari, H. A. Y., Hejazi, F., & Alkhateeb, M. Y. (2021). Retrofitting of corroded reinforced concrete beams in flexure using CFRP rods and anchor bolt. Structures, 29, 1819–1827. doi:10.1016/j.istruc.2020.12.047.
Djamaluddin, R., Irmawaty, R., & Tata, A. (2016). Flexural capacity of reinforced concrete beams strengthened using GFRP sheet after fatigue loading for sustainable construction. Key Engineering Materials, 692, 66–73. doi:10.4028/www.scientific.net/KEM.692.66.
Habeeb, M. N. (2022). Flexural behaviour of continuously supported FRP reinforced concrete beams. University of Bradford, Bradford, Iraq.
Djamaluddin, R., & Irmawaty, R. (2017). Relationship Model of the Moment Capacity of GFRP Sheet Strengthened RC Beams to the Duration of Sea Water Exposure. Procedia Engineering, 180, 1195–1202. doi:10.1016/j.proeng.2017.04.280.
Sultan, M. A., Djamaluddin, R., Tjaronge, W., & Parung, H. (2015). Flexural capacity of concrete beams strengthened using GFRP sheet after seawater immersion. Procedia Engineering, 125, 644–649. doi:10.1016/j.proeng.2015.11.092.
Ali, H., Assih, J., & Li, A. (2021). Flexural capacity of continuous reinforced concrete beams strengthened or repaired by CFRP/GFRP sheets. International Journal of Adhesion and Adhesives, 104. doi:10.1016/j.ijadhadh.2020.102759.
Kim, J., Jeong, S., Kim, H., Kim, Y., & Park, S. (2022). Bond Strength Properties of GFRP and CFRP according to Concrete Strength. Applied Sciences (Switzerland), 12(20), 10611. doi:10.3390/app122010611.
Do-Dai, T., Chu-Van, T., Tran, D. T., Nassif, A. Y., & Nguyen-Minh, L. (2022). Efficacy of CFRP/BFRP laminates in flexurally strengthening of concrete beams with corroded reinforcement. Journal of Building Engineering, 53. doi:10.1016/j.jobe.2022.104606.
DOI: 10.28991/CEJ-2024-010-01-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rudy Djamaluddin
This work is licensed under a Creative Commons Attribution 4.0 International License.