Parametric Analysis of Horizontal Static and Dynamic Behavior in Different Types of Masonry Structures

Georgios Xekalakis, Dimitris Pitilakis, Giulio Zuccaro, Petros Christou


This article introduces the "Pre-seismic Survey Form for Masonry" (PRISM), a simplified tool for evaluating masonry structures. It aims to be user-friendly for both experienced surveyors and beginners. The primary objective is to develop PRISM as an efficient means of gathering relevant data that influences the diverse behaviors exhibited by masonry structures, covering both structural and non-structural aspects. PRISM's development involves a parametric method for identifying critical parameters by analyzing drift results from the response spectrum and horizontal static analyses. These analyses are performed on common masonry structures in European Mediterranean nations. The study investigates various factors, including facade openings, materials around openings, wall thickness, ground type, ground acceleration (g), and principal structural material. By examining 300 2D models created in SAP2000, correlations in structural responses are established. The findings of the parametric analysis significantly enrich the qualitative and quantitative comprehension of structural responses. This advancement contributes to the contemporary knowledge of prevalent masonry structures within European Mediterranean regions. The PRISM survey form employs a numeric rating scale format. Notably, PRISM enables surveyors to access field results, minimizing reliance on computers quickly. The form's design also ensures accessibility and data reliability, making it universally applicable while maintaining simplicity.


Doi: 10.28991/CEJ-2023-09-10-015

Full Text: PDF


Masonry Structures; Parametric Analysis; FE Modelling; Exposure; Risk Assessment; Resilience.


Xekalakis, G., & Christou, P. (2023). Tracing the Historical Development of Architecture in Cyprus and its Resilience to Seismic Hazards. International Journal of Architectural Engineering Technology, 10, 1–15. doi:10.15377/2409-9821.2023.10.1.

Puncello, I., & Caprili, S. (2023). Seismic Assessment of Historical Masonry Buildings at Different Scale Levels: A Review. Applied Sciences (Switzerland), 13(3), 1941. doi:10.3390/app13031941.

Lovett, R.A. (2011). Europe Starting to Dive Under Africa? National Geographic Society, Washington, United States. Available online: (accessed on October 2023).

Bernardo, V., Sousa, R., Candeias, P., Costa, A., & Campos Costa, A. (2022). Historic Appraisal Review and Geometric Characterization of Old Masonry Buildings in Lisbon for Seismic Risk Assessment. International Journal of Architectural Heritage, 16(12), 1921–1941. doi:10.1080/15583058.2021.1918287.

Zeng, B., & Li, Y. (2023). Towards Performance-Based Design of Masonry Buildings: Literature Review. Buildings, 13(6), 1534–1534. doi:10.3390/buildings13061534.

Dong, Z. Q., Li, G., Song, B., Lu, G. H., & Li, H. N. (2022). Failure risk assessment method of masonry structures under earthquakes and flood scouring. Mechanics of Advanced Materials and Structures, 29(21), 3055–3066. doi:10.1080/15376494.2021.1884322.

Zuccaro, G., Dolce, M., Perelli, F. L., De Gregorio, D., & Speranza, E. (2023). CARTIS: a method for the typological-structural characterization of Italian ordinary buildings in urban areas. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1129176.

Funari, M. F., Spadea, S., Lonetti, P., Fabbrocino, F., & Luciano, R. (2020). Visual programming for structural assessment of out-of-plane mechanisms in historic masonry structures. Journal of Building Engineering, 31, 101425–101425. doi:10.1016/j.jobe.2020.101425.

Stepinac, M., & Gašparović, M. (2020). A review of emerging technologies for an assessment of safety and seismic vulnerability and damage detection of existing masonry structures. Applied Sciences (Switzerland), 10(15), 5060. doi:10.3390/app10155060.

Sanrı Karapınar, I., Özbay, A. E. Ö., & Ünen, H. C. (2021). GIS-Based Assessment of Seismic Vulnerability Information of Old Masonry Buildings Using a Mobile Data Validation System. Journal of Performance of Constructed Facilities, 35(3), 04021009. doi:10.1061/(asce)cf.1943-5509.0001574.

Brando, G., Cianchino, G., Rapone, D., Spacone, E., & Biondi, S. (2021). A CARTIS-based method for the rapid seismic vulnerability assessment of minor Italian historical centres. International Journal of Disaster Risk Reduction, 63, 102478. doi:10.1016/j.ijdrr.2021.102478.

Valkonen, A., & Glisic, B. (2022). Evaluation tool for assessing the influence of structural health monitoring on decision-maker risk preferences. Structural Health Monitoring, 21(1), 90–99. doi:10.1177/1475921721992016.

Menteşe, E. Y., Cremen, G., Gentile, R., Galasso, C., Filippi, E. M., & McCloskey, J. (2023). Future exposure modelling for risk-informed decision making in urban planning. International Journal of Disaster Risk Reduction, 90, 103651. doi:10.1016/j.ijdrr.2023.103651.

CSI. (2023). SAP2000: Computers and Structures, Inc. Available online: (accessed on June 2023).

Foti, D. (2013). On the numerical and experimental strengthening assessment of tufa masonry with FRP. Mechanics of Advanced Materials and Structures, 20(2), 163–175. doi:10.1080/15376494.2012.743634.

Mollaei, S., Babaei Ghazijahani, R., Noroozinejad Farsangi, E., & Jahani, D. (2022). Investigation of Behavior of Masonry Walls Constructed with Autoclaved Aerated Concrete Blocks under Blast Loading. Applied Sciences, 12(17), 8725. doi:10.3390/app12178725.

Christou, P., & Xekalakis, G. (2022). The Contribution of Wooden Ring Beams to the Response of the Adobe Structures. Proceedings of International Structural Engineering and Construction, 9(1), AAE-14-1-5. doi:10.14455/isec.2022.9(1).aae-14.

Fudge, C., Fouad, F., & Klingner, R. (2019). Autoclaved aerated concrete. In Developments in the Formulation and Reinforcement of Concrete. Woodhead Publishing Series in Civil and Structural Engineering, 345-363. doi:10.1016/B978-0-08-102616-8.00015-0.

Nichols, J.M., & Totoev, Y.Z. (2003). Experimental determination of the dynamic Modulus of Elasticity of masonry units. Proceedings of the 11th International Brick and Block Masonry Conference, Shanghai, China.

Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., & Reuschlé, T. (2014). The permeability and elastic moduli of tuff from Campi Flegrei, Italy: Implications for ground deformation modelling. Solid Earth, 5(1), 25–44. doi:10.5194/se-5-25-2014.

project, I. S. T. O. S. (n.d.). Home.

Sfaksi, O. H., Bouheraoua, A., Aider, H. A., & Mechiche, M. O. (2022). Seismic Behavior of Reinforced Masonry Structure: Relation between the Behavior Factor and the Ductility. Civil Engineering Journal, 8(10), 2205-2219. doi:10.28991/CEJ-2022-08-10-012.

The Engineering ToolBox. (2019). Poisson's Ratio. Available online: (accessed on June 2023).

Thyssenkrupp. (2018). Density of Aluminium. Thyssenkrupp Materials, Cox's Lane, United Kingdom. Available online: (accessed on October 2023).

Metaweb. (2023). Overview of materials for PVC, Extruded. Material Properties Data, Metaweb. Available online: (accessed on May 2023).

Annecchiarico, M., Portioli, F., & Landolfo, R. (2010). Micro and macro finite element modeling of brick masonry panels subject to lateral loadings. Urban Habitat Constructions under Catastrophic Events (Proceedings), STAMPA, 315-320.

CSI. (2023). Shell - Technical Knowledge Base - Computers and Structures, Inc. - Technical Knowledge Base. Computers and Structures, Inc, Walnut Creek, United States. Available online: (accessed on October 2023).

European Commission. (2014). Mapping Europe's earthquake risk. European Commission, Brussels, Belgium. Available online: (accessed on October 2023).

EN 1998-1. (2004). Design of structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium.

Tomaževič, M., Bosiljkov, V., & Weiss, P. (2004). Structural behaviour factor for masonry structures. 13th world conference on earthquake engineering, 1-6 August, 2004, Vancouver, Canada.

Misir, I. S., & Yucel, G. (2023). Numerical Model Calibration and a Parametric Study Based on the Out-Of-Plane Drift Capacity of Stone Masonry Walls. Buildings, 13(2), 437. doi:10.3390/buildings13020437.

Vlachakis, G., Cervera, M., Barbat, G. B., & Saloustros, S. (2019). Out-of-plane seismic response and failure mechanism of masonry structures using finite elements with enhanced strain accuracy. Engineering Failure Analysis, 97, 534–555. doi:10.1016/j.engfailanal.2019.01.017.

Zavala, C., Diaz, M., Flores, E., & Cardenas, L. (2019). Damage limit states for confined masonry walls based on experimental test. Tecnia, 29(2). doi:10.21754/tecnia.v29i2.715.

Shabani, A., Plevris, V., & Kioumarsi, M. (2021). A comparative study on the initial in-plane stiffness of masonry walls with openings. In Proceedings of the World Conference on Earthquake Engineering, 17WCEE, 27 September-2 October, Sendai, Japan.

Zuccaro, G., & Cacace, F. (2015). Seismic vulnerability assessment based on typological characteristics. The first level procedure “SAVE.” Soil Dynamics and Earthquake Engineering, 69, 262–269. doi:10.1016/j.soildyn.2014.11.003.

GFZ. (2023). Macroseismic Intensity Scale: Classifications used in the European Macroseismic Scale (EMS). Available online: (accessed on May 2023).

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-10-015


  • There are currently no refbacks.

Copyright (c) 2023 Georgios Xekalakis, Dimitris Pitilakis, Giulio Zuccaro, Petros Christou

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.