Application of GIS Models in Determining the Suitable Site for a Solid Waste to Energy Plant in an Urban Area

Ali Basha, Ahmed Salem, Wael Mostafa, Magda H. Farhan

Abstract


This paper deals with the establishment of a solid waste-to-energy plant that significantly reduces the volume of solid waste and produces electricity at the same time. Thirteen criteria have been identified to locate the station based on environmental, economic, and social factors to avoid its negative impacts. These criteria were addressed by combining a Multi Criterion Decision Making (MCDM) method based on the GIS software. This study aims to establish a MCDM system based on the classical AHP and validated by the fuzzy AHP method. The findings revealed that using the classical AHP and fuzzy AHP methods, there was no significant difference in decision-making between the two methods. The importance of the criteria under study has been identified based on the judgments of experts; a questionnaire was designed and conducted electronically, which was collected with the help of a weighted overlay GIS model. This technique combines multiple reclassified data in ArcGIS 10.8 software to overlay criteria layers with different weights to create a composite map of suitability categories across the study area. The outcomes revealed that 96.76% of the study area is unsuitable for establishing the station, 1.36% is moderately suitable, and 0.04% is only very suitable for station site selection.

 

Doi: 10.28991/CEJ-2024-010-01-011

Full Text: PDF


Keywords


Waste to Energy; GIS; MCDM; Classical AHP Method; Fuzzy AHP Method; Kafrelsheikh; Solid Waste.

References


Kallel, A., Serbaji, M. M., & Zairi, M. (2016). Using GIS-Based Tools for the Optimization of Solid Waste Collection and Transport: Case Study of Sfax City, Tunisia. Journal of Engineering (United Kingdom), 4596849. doi:10.1155/2016/4596849.

Burke, C. S., Salas, E., Smith-Jentsch, K., & Rosen, M. A. (2012). Measuring macrocognition in teams: Some insights for navigating the complexities. Macrocognition Metrics and Scenarios: Design and Evaluation for Real-World Teams, 29–43. doi:10.1201/9781315593173-4.

Khan, M. M. U. H., Vaezi, M., & Kumar, A. (2018). Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment. Science of the Total Environment, 610–611, 1065–1075. doi:10.1016/j.scitotenv.2017.08.169.

Ezzat Salem, M., Abd El-Halim, H., Refky, A., & Nassar, I. A. (2022). Potential of Waste to Energy Conversion in Egypt. Journal of Electrical and Computer Engineering, 2022. doi:10.1155/2022/7265553.

Abdallah, M., Shanableh, A., Arab, M., Shabib, A., Adghim, M., & El-Sherbiny, R. (2019). Waste to energy potential in middle income countries of MENA region based on multi-scenario analysis for Kafr El-Sheikh Governorate, Egypt. Journal of Environmental Management, 232, 58–65. doi:10.1016/j.jenvman.2018.11.029.

Lino, F. A. M., & Ismail, K. A. R. (2018). Evaluation of the treatment of municipal solid waste as renewable energy resource in Campinas, Brazil. Sustainable Energy Technologies and Assessments, 29(June), 19–25. doi:10.1016/j.seta.2018.06.011.

Mirzazadeh, F., Hadinejad, F., & Akbarpour Roshan, N. (2018). Investigating utility level of waste disposal methods using multicriteria decision-making techniques (case study: Mazandaran-Iran). Journal of Material Cycles and Waste Management, 20(1), 505–515. doi:10.1007/s10163-017-0611-7.

Lino, F. A. M., & Ismail, K. A. R. (2017). Incineration and recycling for MSW treatment: Case study of Campinas, Brazil. Sustainable Cities and Society, 35(September), 752–757. doi:10.1016/j.scs.2017.09.028.

Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46–56. doi:10.1016/j.energy.2017.10.109.

Hu, H., Li, X., Nguyen, A. D., & Kavan, P. (2015). A critical evaluation of waste incineration plants in Wuhan (China) based on site selection, environmental influence, public health and public participation. International Journal of Environmental Research and Public Health, 12(7), 7593–7614. doi:10.3390/ijerph120707593.

Aragonés-Beltrán, P., Pastor-Ferrando, J. P., García-García, F., & Pascual-Agulló, A. (2010). An Analytic Network Process approach for siting a municipal solid waste plant in the Metropolitan Area of Valencia (Spain). Journal of Environmental Management, 91(5), 1071–1086. doi:10.1016/j.jenvman.2009.12.007.

Malczewski, J. (2004). GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 62(1), 3–65. doi:10.1016/j.progress.2003.09.002.

Wu, Y., Qin, L., Xu, C., & Ji, S. (2018). Site selection of waste-to-energy (WtE) plant considering public satisfaction by an extended vikor method. Mathematical Problems in Engineering, 2018(ii). doi:10.1155/2018/5213504.

Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. doi:10.1016/j.jclepro.2018.01.130.

Basha, A., Farhan, M., & Lofty, N. (2022). The Most Important Criteria in Controlling the Selection of Airport Places: A Review Article. Journal of Contemporary Technology and Applied Engineering, 1(1), 9-29. doi:10.21608/jctae.2022.143848.1001.

Abushammala, M. F. M., Qazi, W. A., Frrag, S., Alazaiza, M. Y. D., & Younes, M. K. (2022). Site selection of municipal solid waste incineration plant using GIS and multicriteria decision analysis. Journal of the Air and Waste Management Association, 72(9), 1027–1039. doi:10.1080/10962247.2022.2064002.

Chullamon, V., & Skolpap, W. (2020). GIS-based site analysis for selecting suitable sites of waste-to-energy plants in Pathumthani 7(2), 23–29. doi:10.14456/ssstj.2020.11.

Yalcinkaya, S., & Kirtiloglu, O. S. (2021). Application of a geographic information system-based fuzzy analytic hierarchy process model to locate potential municipal solid waste incineration plant sites: A case study of Izmir Metropolitan Municipality. Waste Management and Research, 39(1), 174–184. doi:10.1177/0734242X20939636.

Meng, Q., Pang, N., Zhao, S., & Gao, J. (2023). Two-stage optimal site selection for waste-to-energy plant using single-valued neutrosophic sets and geographic information system based multi-criteria decision-making approach: A case study of Beijing, China. Waste Management, 156, 283–296. doi:10.1016/j.wasman.2022.05.025.

Nguyen, D. T., Truong, M. H., Ngo, T. P. U., Le, A. M., & Yamato, Y. (2022). GIS-Based Simulation for Landfill Site Selection in Mekong Delta: A Specific Application in Ben Tre Province. Remote Sensing, 14(22), 5704. doi:10.3390/rs14225704.

Şimşek, K., & Alp, S. (2022). Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey. Sustainability (Switzerland), 14(16), 9810. doi:10.3390/su14169810.

Mussa, A., & Suryabhagavan, K. V. (2021). Solid waste dumping site selection using GIS-based multi-criteria spatial modeling: a case study in Logia town, Afar region, Ethiopia. Geology, Ecology, and Landscapes, 5(3), 186–198. doi:10.1080/24749508.2019.1703311.

Silva López, J. O., Salas López, R., Rojas Briceño, N. B., Gómez Fernández, D., Terrones Murga, R. E., Iliquín Trigoso, D., Barboza Castillo, E., Oliva Cruz, M., & Barrena Gurbillón, M. Á. (2022). Analytic Hierarchy Process (AHP) for a Landfill Site Selection in Chachapoyas and Huancas (NW Peru): Modeling in a GIS-RS Environment. Advances in Civil Engineering, 2022. doi:10.1155/2022/9733322.

Paul, S., & Ghosh, S. (2022). Identification of solid waste dumping site suitability of Kolkata Metropolitan Area using Fuzzy-AHP model. Cleaner Logistics and Supply Chain, 3, 100030. doi:10.1016/j.clscn.2022.100030.

Aslam, B., Maqsoom, A., Tahir, M. D., Ullah, F., Ur Rehman, M. S., & Albattah, M. (2022). Identifying and Ranking Landfill Sites for Municipal Solid Waste Management: An Integrated Remote Sensing and GIS Approach. Buildings, 12(5), 605. doi:10.3390/buildings12050605.

GOPP (2023). General Organization for Physical Planning, Cairo, Egypt. Available online: https://gopp.gggid.com/ (accessed on January 2024). (In Arabic).

Ibrahim, M. I. M., & Mohamed, N. A. E. M. (2016). Towards Sustainable Management of Solid Waste in Egypt. Procedia Environmental Sciences, 34, 336–347. doi:10.1016/j.proenv.2016.04.030.

Mubeen, I., & Buekens, A. (2019). Energy from Waste. Current Developments in Biotechnology and Bioengineering, 283–305, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-444-64083-3.00014-2.

Rogers, A. (1995). Population forecasting: Do simple models outperform complex models?. Mathematical Population Studies, 5(3), 187-202. doi:10.1080/08898489509525401.

CAPMAS (2017). Egypt in Figures 2017. Central Agency for Public Mobilization and Statistics, Egypt. Available online: https://www.capmas.gov.eg/ (accessed on January 2024). (In Arabic).

Panepinto, D., & Zanetti, M. C. (2018). Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration. Waste Management, 73, 332–341. doi:10.1016/j.wasman.2017.07.036.

Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. doi:10.1016/0377-2217(90)90057-I.

Tavares, G., Zsigraiová, Z., & Semiao, V. (2011). Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Management, 31(9–10), 1960–1972. doi:10.1016/j.wasman.2011.04.013.

Hassaan, M. A. (2015). A GIS-Based Suitability Analysis for Siting a Solid Waste Incineration Power Plant in an Urban Area Case Study: Alexandria Governorate, Egypt. Journal of Geographic Information System, 7(6), 643–657. doi:10.4236/jgis.2015.76052.

Feyzi, S., Khanmohammadi, M., Abedinzadeh, N., & Aalipour, M. (2019). Multi- criteria decision analysis FANP based on GIS for siting municipal solid waste incineration power plant in the north of Iran. Sustainable Cities and Society, 47, 101513. doi:10.1016/j.scs.2019.101513.

Shi, X., Elmore, A., Li, X., Gorence, N. J., Jin, H., Zhang, X., & Wang, F. (2008). Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong Province, China. Biomass and Bioenergy, 32(1), 35–43. doi:10.1016/j.biombioe.2007.06.008.

Hereher, M. E., Al-Awadhi, T., & Mansour, S. A. (2020). Assessment of the optimized sanitary landfill sites in Muscat, Oman. Egyptian Journal of Remote Sensing and Space Science, 23(3), 355–362. doi:10.1016/j.ejrs.2019.08.001.

Barakat, A., Hilali, A., Baghdadi, M. El, & Touhami, F. (2017). Landfill site selection with GIS-based multi-criteria evaluation technique. A case study in Béni Mellal-Khouribga Region, Morocco. Environmental Earth Sciences, 76(12), 413. doi:10.1007/s12665-017-6757-8.

Chabuk, A., Al-Ansari, N., Hussain, H. M., Knutsson, S., Pusch, R., & Laue, J. (2017). Combining GIS applications and method of multi-criteria decision-making (AHP) for landfill siting in Al-Hashimiyah Qadhaa, Babylon, Iraq. Sustainability (Switzerland), 9(11), 1932. doi:10.3390/su9111932.

Effat, H. A., & Hegazy, M. N. (2012). Mapping potential landfill sites for North Sinai cities using spatial multicriteria evaluation. Egyptian Journal of Remote Sensing and Space Science, 15(2), 125–133. doi:10.1016/j.ejrs.2012.09.002.

Wind, Y., & Saaty, T. L. (1980). Marketing Applications of the Analytic Hierarchy Process. Management Science, 26(7), 641–658. doi:10.1287/mnsc.26.7.641.

Veitia Rodríguez, E. R., Montalván Estrada, A., & Martínez López, Y. (2014). Choice of systemic indicators for soil environmental sustainability. Revista Ciencias Técnicas Agropecuarias, 23(4), 43-50. (In Spanish).

Saaty, T.L. (2001). Fundamentals of the Analytic Hierarchy Process. The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making. Managing Forest Ecosystems, 3, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-015-9799-9_2.

Karim Ghani, W. A. W. A., Rusli, I. F., Biak, D. R. A., & Idris, A. (2013). An application of the theory of planned behaviour to study the influencing factors of participation in source separation of food waste. Waste Management, 33(5), 1276–1281. doi:10.1016/j.wasman.2012.09.019.

Weck, M., Klocke, F., Schell, H., & Rüenauver, E. (1997). Evaluating alternative production cycles using the extended fuzzy AHP method. European Journal of Operational Research, 100(2), 351–366. doi:10.1016/S0377-2217(96)00295-0.

Wang, Y. M., Luo, Y., & Hua, Z. (2008). On the extent analysis method for fuzzy AHP and its applications. European Journal of Operational Research, 186(2), 735–747. doi:10.1016/j.ejor.2007.01.050.

Deng, H. (1999). Multicriteria analysis with fuzzy pairwise comparison. IEEE International Conference on Fuzzy Systems, 2(x), 726–731. doi:10.1109/fuzzy.1999.793038.

Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. doi:10.1016/0377-2217(95)00300-2.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-01-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ali Basha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message