Cold-formed Steel-Concrete Composite Beams with Back-to-Back Channel Sections in Bending

Andrea Rajić, Ivan Lukačević, Davor Skejić, Viorel Ungureanu

Abstract


Steel-concrete composite structures are very attractive because of their characteristics, which can be emphasised by using cold-formed steel instead of hot-rolled ones. This paper presents possible analytical approaches and a parametric finite element study of cold-formed steel-concrete composite beams in bending. Analysed beams are formed of back-to-back cold-formed steel channels and concrete slabs connected by demountable shear connectors. A solid concrete slab on a profiled metal sheet analysed. Also, the study investigates the influence of corrugated web between the back-to-back channels of different thicknesses. In the case of a corrugated web, the distance between the shear connectors is increased. Furthermore, different degrees of shear connection, shear connector quality, and their arrangements are considered. An analytical study is based on full and partial shear connection assumptions and non-linear bending resistance. It is shown that the steel channel thickness and degree of shear connection significantly influence the beam bending capacity as well as concrete slab configurations. Conversely, a discrete connection between steel elements has a minor effect. A comparison of the maximum obtained bending capacities in FE analyses is in good agreement with analytical approaches for full and partial shear connections.

 

Doi: 10.28991/CEJ-2023-09-10-01

Full Text: PDF


Keywords


Cold-Formed Steel; Steel-Concrete Composite Beams; Demountable Shear Connections; Discrete and Continuous Shear Connections; Bending Resistance; Numerical Study.

References


Lukačević, I., Ungureanu, V., Valčić, A., & Ćurković, I. (2021). Numerical study on bending resistance of cold-formed steel back-to-back built-up elements. Ce/Papers, 4(2–4), 487–494. doi:10.1002/cepa.1320.

Selvaraj, S., & Madhavan, M. (2021). Design of Cold-Formed Steel Back-To-Back Connected Built-up Beams. Journal of Constructional Steel Research, 181, 106623. doi:10.1016/j.jcsr.2021.106623.

Chen, B., Roy, K., Fang, Z., Uzzaman, A., Raftery, G., & Lim, J. B. P. (2021). Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes, and plain webs. Engineering Structures, 235, 112042. doi:10.1016/j.engstruct.2021.112042.

Ungureanu, V., Both, I., Burca, M., Grosan, M., Neagu, C., & Dubina, D. (2018). Experimental investigations on built-up cold-formed steel beams connected by resistance spot welding. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018. doi:10.4995/asccs2018.2018.7169.

Both, I., Ungureanu, V., Tunea, D., Crisan, A., & Grosan, M. (2018). Experimental and numerical investigations on cold- formed steel beams assembled by MIG brazing. International Conference on Engineering Research and Practice for Steel Construction (ICSC2018), 5-7 September 2018, Hong Kong.

Ungureanu, V., Both, I., Burca, M., Radu, B., Neagu, C., & Dubina, D. (2021). Experimental and numerical investigations on built-up cold-formed steel beams using resistance spot welding. Thin-Walled Structures, 161, 107456. doi:10.1016/j.tws.2021.107456.

Ungureanu, V., Both, I., Tunea, D., Grosan, M., Neagu, C., Georgescu, M., & Dubina, D. (2018). Experimental investigations on built-up cold-formed steel beams using MIG brazing. Proceedings of the Eighth International Conference on Thin-Walled Structures-ICTWS, 24-27 July, 2018, Lisbon, Portugal.

Kouider, N., Hadidane, Y., & Benzerara, M. (2021). Numerical investigation of the cold-formed I-beams bending strength with different web shapes. Frattura ed Integrita Strutturale, 16(59), 153–171. doi:10.3221/IGF-ESIS.59.12.

Alharthi, Y. M., Sharaky, I. A., & Elamary, A. S. (2021). Numerical Analysis of Hybrid Steel Beams with Trapezoidal Corrugated Web Nonwelded Inclined Folds. Advances in Civil Engineering, 2021. doi:10.1155/2021/9918967.

Górecki, M., & Śledziewski, K. (2022). Influence of corrugated web geometry on mechanical properties of I-beam: Laboratory tests. Materials, 15(1), 277. doi:10.3390/ma15010277.

Mohamed, A., Tohamy, S., Saddek, A., & Drar, A. (2022). Numerical Investigation of Flange Buckling Behavior of Steel Plate Girders with Corrugated Webs. Sohag Engineering Journal, 2(1), 41–47. doi:10.21608/sej.2022.120610.1009.

Hasan, Z. K., Hemzah, S. A., & Al-Kannoon, M. A. A. K. (2021). Behavior of corrugated steel compact I-section beams. Journal of Physics: Conference Series, 1895(1). doi:10.1088/1742-6596/1895/1/012063.

Fang, Z., Roy, K., Liang, H., Poologanathan, K., Ghosh, K., Mohamed, A. M., & Lim, J. B. P. (2021). Numerical simulation and design recommendations for web crippling strength of cold-formed steel channels with web holes under interior-one-flange loading at elevated temperatures. Buildings, 11(12), 666. doi:10.3390/buildings11120666.

Hsu, C. T. T., Punurai, S., Punurai, W., & Majdi, Y. (2014). New composite beams having cold-formed steel joists and concrete slab. Engineering Structures, 71, 187–200. doi:10.1016/j.engstruct.2014.04.011.

Bamaga, S. O., Tahir, M. M., Ngian, S. P., Mohamad, S., Sulaiman, A., & Aghlara, R. (2019). Structural behaviour of cold-formed steel of double c-lipped channel sections integrated with concrete slabs as composite beams. Latin American Journal of Solids and Structures, 16(5), 1–15. doi:10.1590/1679-78255515.

Elsawaf, S. A., & Bamaga, S. O. (2021). Strength capacity and failure mode of shear connectors suitable for composite cold formed steel beams: Numerical study. Materials, 14(13), 3627. doi:10.3390/ma14133627.

Lukačević, I., Ćurković, I., Rajić, A., & Bartolac, M. (2022). Lightweight Composite Floor System—Cold-Formed Steel and Concrete—LWT-FLOOR Project. Buildings, 12(2), 209. doi:10.3390/buildings12020209.

Nijgh, M. P., Gîrbacea, I. A., & Veljkovic, M. (2019). Elastic behaviour of a tapered steel-concrete composite beam optimized for reuse. Engineering Structures, 183, 366–374. doi:10.1016/j.engstruct.2019.01.022.

Alhajri, T. M., Tahir, M. M., Azimi, M., Mirza, J., Lawan, M. M., Alenezi, K. K., & Ragaee, M. B. (2016). Behavior of pre-cast U-Shaped Composite Beam integrating cold-formed steel with ferro-cement slab. Thin-Walled Structures, 102, 18–29. doi:10.1016/j.tws.2016.01.014.

Saggaff, A., Tahir, M. M., Azimi, M., & Alhajri, T. M. (2017). Structural aspects of cold-formed steel section designed as U-shape composite beam. AIP Conference Proceedings. doi:10.1063/1.5011505.

Hosseini, S. M., Mashiri, F., & Mirza, O. (2021). Parametric study of innovative bolted shear connectors using 3D finite element modelling. Journal of Constructional Steel Research, 179, 106565. doi:10.1016/j.jcsr.2021.106565.

Wang, W., Zhang, X. D., Zhou, X. L., Wu, L., & Zhu, H. J. (2021). Study on Shear Behavior of Multi-Bolt Connectors for Prefabricated Steel–Concrete Composite Beams. Frontiers in Materials, 8. doi:10.3389/fmats.2021.625425.

Arévalo, D., Hernández, L., Gómez, C., Velasteguí, G., Guaminga, E., Baquero, R., & Dibujés, R. (2021). Structural performance of steel angle shear connectors with different orientation. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00523.

Lacki, P., Nawrot, J., Derlatka, A., & Winowiecka, J. (2019). Numerical and experimental tests of steel-concrete composite beam with the connector made of top-hat profile. Composite Structures, 211, 244–253. doi:10.1016/j.compstruct.2018.12.035.

Jung, D. S., Park, S. H., Kim, T. H., Han, J. W., & Kim, C. Y. (2022). Demountable Bolted Shear Connector for Easy Deconstruction and Reconstruction of Concrete Slabs in Steel–Concrete Bridges. Applied Sciences (Switzerland), 12(3), 1508. doi:10.3390/app12031508.

Talukder, M. M. H., Mouri, M. M., Singha, A., & Rahman, Md. S. (2021). Numerical Simulation of Steel Concrete Composite Floor System. Materials Science Forum, 1047, 195–201. doi:10.4028/www.scientific.net/msf.1047.195.

Alwash, N. A., & Abd, N. H. (2021). Non-linear behavior of composite two way slab with screws as shear connectors under equivalent uniform distributed repeated load. Journal of Physics: Conference Series, 1973, 012036. doi:10.1088/1742-6596/1973/1/012036.

Chung, W., & Sotelino, E. D. (2006). Three-dimensional finite element modeling of composite girder bridges. Engineering Structures, 28(1), 63–71. doi:10.1016/j.engstruct.2005.05.019.

Bamaga, S. O., Tahir, M. M., Tan, C. S., Shek, P. N., & Aghlara, R. (2019). Push-out tests on three innovative shear connectors for composite cold-formed steel concrete beams. Construction and Building Materials, 223, 288–298. doi:10.1016/j.conbuildmat.2019.06.223.

Wang, W., Zhang, X. dong, Zhou, X. long, Zhang, B., Chen, J., & Li, C. Hui. (2022). Experimental study on shear performance of an advanced bolted connection in steel-concrete composite beams. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01037.

Dai, X., Lam, D., Sheehan, T., Yang, J., & Zhou, K. (2018). Use of bolted shear connectors in composite construction. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018. doi:10.4995/asccs2018.2018.7039.

Dias, J. V. F., Carvalho, H., Rodrigues, F. C., Maia, K. A. F. P., & Caldas, R. B. (2021). Experimental and numerical study on CFS composite beams with riveted shear connectors. Structures, 33, 737–747. doi:10.1016/j.istruc.2021.04.058.

Vigneri, V., Odenbreit, C., & Romero, A. (2021). Numerical study on design rules for minimum degree of shear connection in propped steel–concrete composite beams. Engineering Structures, 241, 112466. doi:10.1016/j.engstruct.2021.112466.

Classen, M. (2018). Limitations on the use of partial shear connection in composite beams with steel T-sections and uniformly spaced rib shear connectors. Journal of Constructional Steel Research, 142, 99–112. doi:10.1016/j.jcsr.2017.11.023.

M.Irwan, J., Hanizah, A. H., & Azmi, I. (2009). Test of shear transfer enhancement in symmetric cold-formed steel-concrete composite beams. Journal of Constructional Steel Research, 65(12), 2087–2098. doi:10.1016/j.jcsr.2009.07.008.

EN 1994-1-1. (2004). Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. European Commitee for Standardization (CEN), Brussels, Belgium.

Kyvelou, P., Gardner, L., & Nethercot, D. A. (2017). Design of Composite Cold-Formed Steel Flooring Systems. Structures, 12, 242–252. doi:10.1016/j.istruc.2017.09.006.

Dujmović, D., Androić, B., & Lukačević, I. (2014). Composite Structures According to Eurocode 4. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783433604908.

ABAQUS. (2016). ABAQUS User’s Manual. Dassault Systemes Simulia Corp, Rhode Island, United States.

Ungureanu, V., Lukačević, I., Both, I., & Burca, M. (2019). Numerical investigation of built-up cold-formed steel beams connected by spot welding. Proceedings of the Evolving Metropolis, 2019 IABSE Congress, 4-6 September, 2019, New York, United States.

EN 1992-1-1. (2011). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.

Pavlović, M., Marković, Z., Veljković, M., & Bucrossed D Signevac, D. (2013). Bolted shear connectors vs. headed studs behaviour in push-out tests. Journal of Constructional Steel Research, 88, 134–149. doi:10.1016/j.jcsr.2013.05.003.

European standard EN 1993-1-1. (2005). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-10-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Andrea Rajić, Ivan Lukačević, Davor Skejić, Viorel Ungureanu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message