Cold-formed Steel-Concrete Composite Beams with Back-to-Back Channel Sections in Bending
Abstract
Doi: 10.28991/CEJ-2023-09-10-01
Full Text: PDF
Keywords
References
Lukačević, I., Ungureanu, V., Valčić, A., & Ćurković, I. (2021). Numerical study on bending resistance of cold-formed steel back-to-back built-up elements. Ce/Papers, 4(2–4), 487–494. doi:10.1002/cepa.1320.
Selvaraj, S., & Madhavan, M. (2021). Design of Cold-Formed Steel Back-To-Back Connected Built-up Beams. Journal of Constructional Steel Research, 181, 106623. doi:10.1016/j.jcsr.2021.106623.
Chen, B., Roy, K., Fang, Z., Uzzaman, A., Raftery, G., & Lim, J. B. P. (2021). Moment capacity of back-to-back cold-formed steel channels with edge-stiffened holes, un-stiffened holes, and plain webs. Engineering Structures, 235, 112042. doi:10.1016/j.engstruct.2021.112042.
Ungureanu, V., Both, I., Burca, M., Grosan, M., Neagu, C., & Dubina, D. (2018). Experimental investigations on built-up cold-formed steel beams connected by resistance spot welding. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018. doi:10.4995/asccs2018.2018.7169.
Both, I., Ungureanu, V., Tunea, D., Crisan, A., & Grosan, M. (2018). Experimental and numerical investigations on cold- formed steel beams assembled by MIG brazing. International Conference on Engineering Research and Practice for Steel Construction (ICSC2018), 5-7 September 2018, Hong Kong.
Ungureanu, V., Both, I., Burca, M., Radu, B., Neagu, C., & Dubina, D. (2021). Experimental and numerical investigations on built-up cold-formed steel beams using resistance spot welding. Thin-Walled Structures, 161, 107456. doi:10.1016/j.tws.2021.107456.
Ungureanu, V., Both, I., Tunea, D., Grosan, M., Neagu, C., Georgescu, M., & Dubina, D. (2018). Experimental investigations on built-up cold-formed steel beams using MIG brazing. Proceedings of the Eighth International Conference on Thin-Walled Structures-ICTWS, 24-27 July, 2018, Lisbon, Portugal.
Kouider, N., Hadidane, Y., & Benzerara, M. (2021). Numerical investigation of the cold-formed I-beams bending strength with different web shapes. Frattura ed Integrita Strutturale, 16(59), 153–171. doi:10.3221/IGF-ESIS.59.12.
Alharthi, Y. M., Sharaky, I. A., & Elamary, A. S. (2021). Numerical Analysis of Hybrid Steel Beams with Trapezoidal Corrugated Web Nonwelded Inclined Folds. Advances in Civil Engineering, 2021. doi:10.1155/2021/9918967.
Górecki, M., & Śledziewski, K. (2022). Influence of corrugated web geometry on mechanical properties of I-beam: Laboratory tests. Materials, 15(1), 277. doi:10.3390/ma15010277.
Mohamed, A., Tohamy, S., Saddek, A., & Drar, A. (2022). Numerical Investigation of Flange Buckling Behavior of Steel Plate Girders with Corrugated Webs. Sohag Engineering Journal, 2(1), 41–47. doi:10.21608/sej.2022.120610.1009.
Hasan, Z. K., Hemzah, S. A., & Al-Kannoon, M. A. A. K. (2021). Behavior of corrugated steel compact I-section beams. Journal of Physics: Conference Series, 1895(1). doi:10.1088/1742-6596/1895/1/012063.
Fang, Z., Roy, K., Liang, H., Poologanathan, K., Ghosh, K., Mohamed, A. M., & Lim, J. B. P. (2021). Numerical simulation and design recommendations for web crippling strength of cold-formed steel channels with web holes under interior-one-flange loading at elevated temperatures. Buildings, 11(12), 666. doi:10.3390/buildings11120666.
Hsu, C. T. T., Punurai, S., Punurai, W., & Majdi, Y. (2014). New composite beams having cold-formed steel joists and concrete slab. Engineering Structures, 71, 187–200. doi:10.1016/j.engstruct.2014.04.011.
Bamaga, S. O., Tahir, M. M., Ngian, S. P., Mohamad, S., Sulaiman, A., & Aghlara, R. (2019). Structural behaviour of cold-formed steel of double c-lipped channel sections integrated with concrete slabs as composite beams. Latin American Journal of Solids and Structures, 16(5), 1–15. doi:10.1590/1679-78255515.
Elsawaf, S. A., & Bamaga, S. O. (2021). Strength capacity and failure mode of shear connectors suitable for composite cold formed steel beams: Numerical study. Materials, 14(13), 3627. doi:10.3390/ma14133627.
Lukačević, I., Ćurković, I., Rajić, A., & Bartolac, M. (2022). Lightweight Composite Floor System—Cold-Formed Steel and Concrete—LWT-FLOOR Project. Buildings, 12(2), 209. doi:10.3390/buildings12020209.
Nijgh, M. P., Gîrbacea, I. A., & Veljkovic, M. (2019). Elastic behaviour of a tapered steel-concrete composite beam optimized for reuse. Engineering Structures, 183, 366–374. doi:10.1016/j.engstruct.2019.01.022.
Alhajri, T. M., Tahir, M. M., Azimi, M., Mirza, J., Lawan, M. M., Alenezi, K. K., & Ragaee, M. B. (2016). Behavior of pre-cast U-Shaped Composite Beam integrating cold-formed steel with ferro-cement slab. Thin-Walled Structures, 102, 18–29. doi:10.1016/j.tws.2016.01.014.
Saggaff, A., Tahir, M. M., Azimi, M., & Alhajri, T. M. (2017). Structural aspects of cold-formed steel section designed as U-shape composite beam. AIP Conference Proceedings. doi:10.1063/1.5011505.
Hosseini, S. M., Mashiri, F., & Mirza, O. (2021). Parametric study of innovative bolted shear connectors using 3D finite element modelling. Journal of Constructional Steel Research, 179, 106565. doi:10.1016/j.jcsr.2021.106565.
Wang, W., Zhang, X. D., Zhou, X. L., Wu, L., & Zhu, H. J. (2021). Study on Shear Behavior of Multi-Bolt Connectors for Prefabricated Steel–Concrete Composite Beams. Frontiers in Materials, 8. doi:10.3389/fmats.2021.625425.
Arévalo, D., Hernández, L., Gómez, C., Velasteguí, G., Guaminga, E., Baquero, R., & Dibujés, R. (2021). Structural performance of steel angle shear connectors with different orientation. Case Studies in Construction Materials, 14. doi:10.1016/j.cscm.2021.e00523.
Lacki, P., Nawrot, J., Derlatka, A., & Winowiecka, J. (2019). Numerical and experimental tests of steel-concrete composite beam with the connector made of top-hat profile. Composite Structures, 211, 244–253. doi:10.1016/j.compstruct.2018.12.035.
Jung, D. S., Park, S. H., Kim, T. H., Han, J. W., & Kim, C. Y. (2022). Demountable Bolted Shear Connector for Easy Deconstruction and Reconstruction of Concrete Slabs in Steel–Concrete Bridges. Applied Sciences (Switzerland), 12(3), 1508. doi:10.3390/app12031508.
Talukder, M. M. H., Mouri, M. M., Singha, A., & Rahman, Md. S. (2021). Numerical Simulation of Steel Concrete Composite Floor System. Materials Science Forum, 1047, 195–201. doi:10.4028/www.scientific.net/msf.1047.195.
Alwash, N. A., & Abd, N. H. (2021). Non-linear behavior of composite two way slab with screws as shear connectors under equivalent uniform distributed repeated load. Journal of Physics: Conference Series, 1973, 012036. doi:10.1088/1742-6596/1973/1/012036.
Chung, W., & Sotelino, E. D. (2006). Three-dimensional finite element modeling of composite girder bridges. Engineering Structures, 28(1), 63–71. doi:10.1016/j.engstruct.2005.05.019.
Bamaga, S. O., Tahir, M. M., Tan, C. S., Shek, P. N., & Aghlara, R. (2019). Push-out tests on three innovative shear connectors for composite cold-formed steel concrete beams. Construction and Building Materials, 223, 288–298. doi:10.1016/j.conbuildmat.2019.06.223.
Wang, W., Zhang, X. dong, Zhou, X. long, Zhang, B., Chen, J., & Li, C. Hui. (2022). Experimental study on shear performance of an advanced bolted connection in steel-concrete composite beams. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e01037.
Dai, X., Lam, D., Sheehan, T., Yang, J., & Zhou, K. (2018). Use of bolted shear connectors in composite construction. Proceedings 12th International Conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018. doi:10.4995/asccs2018.2018.7039.
Dias, J. V. F., Carvalho, H., Rodrigues, F. C., Maia, K. A. F. P., & Caldas, R. B. (2021). Experimental and numerical study on CFS composite beams with riveted shear connectors. Structures, 33, 737–747. doi:10.1016/j.istruc.2021.04.058.
Vigneri, V., Odenbreit, C., & Romero, A. (2021). Numerical study on design rules for minimum degree of shear connection in propped steel–concrete composite beams. Engineering Structures, 241, 112466. doi:10.1016/j.engstruct.2021.112466.
Classen, M. (2018). Limitations on the use of partial shear connection in composite beams with steel T-sections and uniformly spaced rib shear connectors. Journal of Constructional Steel Research, 142, 99–112. doi:10.1016/j.jcsr.2017.11.023.
M.Irwan, J., Hanizah, A. H., & Azmi, I. (2009). Test of shear transfer enhancement in symmetric cold-formed steel-concrete composite beams. Journal of Constructional Steel Research, 65(12), 2087–2098. doi:10.1016/j.jcsr.2009.07.008.
EN 1994-1-1. (2004). Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. European Commitee for Standardization (CEN), Brussels, Belgium.
Kyvelou, P., Gardner, L., & Nethercot, D. A. (2017). Design of Composite Cold-Formed Steel Flooring Systems. Structures, 12, 242–252. doi:10.1016/j.istruc.2017.09.006.
Dujmović, D., Androić, B., & Lukačević, I. (2014). Composite Structures According to Eurocode 4. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783433604908.
ABAQUS. (2016). ABAQUS User’s Manual. Dassault Systemes Simulia Corp, Rhode Island, United States.
Ungureanu, V., Lukačević, I., Both, I., & Burca, M. (2019). Numerical investigation of built-up cold-formed steel beams connected by spot welding. Proceedings of the Evolving Metropolis, 2019 IABSE Congress, 4-6 September, 2019, New York, United States.
EN 1992-1-1. (2011). Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.
Pavlović, M., Marković, Z., Veljković, M., & Bucrossed D Signevac, D. (2013). Bolted shear connectors vs. headed studs behaviour in push-out tests. Journal of Constructional Steel Research, 88, 134–149. doi:10.1016/j.jcsr.2013.05.003.
European standard EN 1993-1-1. (2005). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.
DOI: 10.28991/CEJ-2023-09-10-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Andrea Rajić, Ivan Lukačević, Davor Skejić, Viorel Ungureanu

This work is licensed under a Creative Commons Attribution 4.0 International License.