Utilization of Ionic Organic Polymer to Improve Performance and Properties of Problematic Soils

Usama Heneash, Hossam El-Din Fawzy, Karima Ali, Ali Basha

Abstract


Problematic soils with high compressibility and low shear strength are often treated with traditional chemical stabilizing additives such as cement and lime to improve their engineering properties. Polymers were employed to improve and reinforce a variety of material qualities in a wide range of applications. The use of polymer SBS (stabilizer base stabilizer) to improve the characteristics of problematic soils is discussed in this research. Two types of soils were used. The first type, "soil A Burj," is collapsible soil and was collected from Burj El-Arab city, while the second type, "soil B Dam," is fine sand and was obtained from Damietta city. The untreated and treated samples were subjected to sieve analysis, hydrometer, liquid limits, standard compaction, collapse potential (CP), direct shear, California Bearing Ratio (CBR) testing, and SEM, TEM, chemical, and microstructural analysis tests. Three different polymer SBS concentrations in water were used (1:300, 1:150, and 1:10). The results showed that by adding the polymer SBS, LL and OWC decreased exhibiting more plastic behavior compared to the non-treated samples. Also, the CP decreased with adding the polymer SBS, and the degree of collapsibility was enhanced from trouble to moderate trouble condition. The shear strength, internal friction angle, and CBR value were also improved. In summary, the best results were produced when a polymer ratio of 1:150 was used and a curing time of at least 28 days was provided.

 

Doi: 10.28991/CEJ-2023-09-12-05

Full Text: PDF


Keywords


Problematic Soil; Polymer SBS; Collapse Potential; CBR; Direct Shear; Standard Compaction.

References


Ayeldeen, M., Negm, A., El-Sawwaf, M., & Kitazume, M. (2017). Enhancing mechanical behaviors of collapsible soil using two biopolymers. Journal of Rock Mechanics and Geotechnical Engineering, 9(2), 329–339. doi:10.1016/j.jrmge.2016.11.007.

Rezaei, M., Ajalloeian, R., & Ghafoori, M. (2012). Geotechnical Properties of Problematic Soils Emphasis on Collapsible Cases. International Journal of Geosciences, 03(01), 105–110. doi:10.4236/ijg.2012.31012.

Umesh, T. S., Dinesh, S. V., & Sivapullaiah, P. V. (2011). Characterization of Dispersive Soils. Materials Sciences and Applications, 02(06), 629–633. doi:10.4236/msa.2011.26085.

Li, Z., Zhu, Z., Zhao, Y., Zeng, C., & Zhang, P. (2022). Experimental Investigation on the Diffusion Law of Polymer Slurry Grouted in Sand. Polymers, 14(17), 3635. doi:10.3390/polym14173635.

Katha, B. R. (2002). Shrinkage strain characterization of expansive soils using digital imaging technology. Master Thesis, The University of Texas at Arlington, Arlington, United States.

Houston, S. L., Houston, W. N., Zapata, C. E., & Lawrence, C. (2001). Geotechnical engineering practice for collapsible soils. Unsaturated Soil Concepts and Their Application in Geotechnical Practice. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-015-9775-3_6.

Cerato, A. B., Miller, G. A., & Hajjat, J. A. (2009). Influence of Clod-Size and Structure on Wetting-Induced Volume Change of Compacted Soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(11), 1620–1628. doi:10.1061/(asce)gt.1943-5606.0000146.

Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage Learning, Boston, United States.

Basma, A. A., & Tuncer, E. R. (1994). Evaluation and control of collapsible soils. Journal of Geotechnical Engineering, 120(5), 925–929. doi:10.1061/(ASCE)0733-9410(1994)120:5(925).

Abdelaziz, T. (2007). Response of Shallow Foundations resting on Collapsible Soil. Alexandia University, Bab Sharqi, Egypt.

ECP-202. (2012). Egyptian Code for Soil Mechanics—Design and Construction of Foundations. Housing and Building Research centre, Giza, Egypt.

Latifi, N., Marto, A., & Eisazadeh, A. (2016). Experimental Investigations on Behaviour of Strip Footing Placed on Chemically Stabilised Backfills and Flexible Retaining Walls. Arabian Journal for Science and Engineering, 41(10), 4115–4126. doi:10.1007/s13369-016-2104-8.

Oldham, J. C., Eaves, R. C., & White, D. W. (1977). Materials evaluated as potential soil stabilizers. Miscellaneous Paper S-77–15. US Army Engineer Waterways Experiment Station, Vicksburg, United States.

Waheed, M., & Asmael, N. (2018). Improvement of engineering soil properties using non -traditional additives. MATEC Web of Conferences, 162, 01027. doi:10.1051/matecconf/201816201027.

Blanck, G., Cuisinier, O., & Masrouri, F. (2013). Soil treatment with organic non-traditional additives for the improvement of earthworks. Acta Geotechnica, 9(6), 1111–1122. doi:10.1007/s11440-013-0251-6.

Latifi, N., Marto, A., & Eisazadeh, A. (2015). Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro- and micro-structural considerations. Environmental Earth Sciences, 73(3), 1133–1141. doi:10.1007/s12665-014-3468-2.

Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1), 58–66. doi:10.1061/(asce)0899-1561(2007)19:1(58).

Sojka, R. E., Bjorneberg, D. L., Entry, J. A., Lentz, R. D., & Orts, W. J. (2007). Polyacrylamide in Agriculture and Environmental Land Management. Advances in Agronomy, 92, 75–162. doi:10.1016/S0065-2113(04)92002-0.

Al-Khanbashi, A., Mohamed, A. M.O., Moet, A. and Hadi, B. (2000). Stabilization of desert sand using water-born polymers. In Proc. of the First International Conference on Geotechnical, Geo-environmental Engineering and Management in arid Lands 143 – 148, Al-Ain, United Arab Emirates.

Yang, Q. wen, Pei, X. jun, & Huang, R. qiu. (2019). Impact of polymer mixtures on the stabilization and erosion control of silty sand slope. Journal of Mountain Science, 16(2), 470–485. doi:10.1007/s11629-018-4905-6.

Gu, B., & Doner, H. E. (1992). The interaction of polysaccharides with silver hill illite. Clays and Clay Minerals, 40(2), 151–156. doi:10.1346/CCMN.1992.0400203.

Azzam, W. R. (2014). Utilization of polymer stabilization for improvement of clay microstructures. Applied Clay Science, 93–94, 94–101. doi:10.1016/j.clay.2014.03.006.

Georgees, R. N., Hassan, R. A., & Evans, R. P. (2017). A potential use of a hydrophilic polymeric material to enhance durability properties of pavement materials. Construction and Building Materials, 148, 686–695. doi:10.1016/j.conbuildmat.2017.05.086.

Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W., & Kanungo, D. P. (2018). Evaluation of strength properties of sand modified with organic polymers. Polymers, 10(3), 287. doi:10.3390/polym10030287.

Latifi, N., Horpibulsuk, S., Meehan, C. L., Abd Majid, M. Z., Tahir, M. M., & Mohamad, E. T. (2017). Improvement of Problematic Soils with Biopolymer-An Environmentally Friendly Soil Stabilizer. Journal of Materials in Civil Engineering, 29(2), 4016204. doi:10.1061/(asce)mt.1943-5533.0001706.

Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10(1–2), 39–48. doi:10.1023/A:1021070006895.

Sukmak, P., Horpibulsuk, S., & Shen, S. L. (2013). Strength development in clay-fly ash geopolymer. Construction and Building Materials, 40, 566–574. doi:10.1016/j.conbuildmat.2012.11.015.

Hasan, S. H., & Shafiqu, Q. S. (2017). Expansive Clayey Soil Improvement Using Polyethylene High Density Polymer. ARPN Journal of Engineering and Applied Sciences, 12(24), 7224-7232.

Wang, Y., Liu, J., Lin, C., Qi, C., Chen, Z., Che, W., & Ma, K. (2022). Investigation into Mechanical Behavior of Air-Hardening Organic Polymer-Stabilized Silty Sand. Journal of Materials in Civil Engineering, 34(11), 4022305. doi:10.1061/(asce)mt.1943-5533.0004340.

Mirzababaei, M., Arulrajah, A., & Ouston, M. (2017). Polymers for Stabilization of Soft Clay Soils. Procedia Engineering, 189, 25–32. doi:10.1016/j.proeng.2017.05.005.

Mousavi, F., Abdi, E., & Rahimi, H. (2014). Effect of polymer stabilizer on swelling potential and CBR of forest road material. KSCE Journal of Civil Engineering, 18(7), 2064–2071. doi:10.1007/s12205-014-0137-7.

Xia, W., Wang, Q., Yu, Q., Yao, M., Sun, D., Liu, J., & Wang, Z. (2023). Experimental investigation of the mechanical properties of hydrophobic polymer-modified soil subjected to freeze–thaw cycles. Acta Geotechnica, 18(7), 3623–3642. doi:10.1007/s11440-023-01804-9.

Shafiqu, Q. S. M., & Hasan, S. H. (2018). Improvement an Expansive Soil using Polymethacrylate Polymer. IOP Conference Series: Materials Science and Engineering, 454, 012138. doi:10.1088/1757-899x/454/1/012138.

Geng, L., Liu, Y., Xu, Q., Han, F., Yu, X., & Qin, T. (2021). Development of bio-based stabilizers and their effects on the performance of SBS-modified asphalt. Construction and Building Materials, 271, 121889. doi:10.1016/j.conbuildmat.2020.121889.

ASTM D421. (2007). Standard Practice for Dry Preparation of Soil Samples for Particle-Size. ASTM International, Pennsylvania, United States.

ASTM D422. (2007). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States.

ASTM D4318. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.

ASTM D1557. (2021). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D1557-12R21.

ASTM D5333. (1996). Standard test method for measurement of collapse potential of soils. ASTM International, Pennsylvania, United States. doi:10.1520/D5333-92R96.

ASTM D3080-04. (2012). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080-04.

ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.

Rajoria, V., & Kaur, S. (2015). Effect of polymer stabilizer on the geotechnical properties of black cotton soil. 50th Indian Geotechnical Conference, 17-19 December, 2015, Pune, India.

Dai, D., Peng, J., Wei, R., Li, L., & Lin, H. (2022). Improvement in dynamic behaviors of cement-stabilized soil by super-absorbent-polymer under cyclic loading. Soil Dynamics and Earthquake Engineering, 163, 107554. doi:10.1016/j.soildyn.2022.107554.

Zhu, X., Liu, J., Xue, J., Zhang, F., Chen, Z., Hu, G., & Jiang, C. (2022). Effect of Curing Condition on the Compressive Mechanical Behavior of Clayey Soil Stabilized with Liquid Polymer. International Journal of Polymer Science, 2022. doi:10.1155/2022/9031369.

Mpofu, P., Addai-Mensah, J., & Ralston, J. (2004). Flocculation and dewatering behaviour of smectite dispersions: Effect of polymer structure type. Minerals Engineering, 17(3), 411–423. doi:10.1016/j.mineng.2003.11.010.

Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., & Coveney, P. V. (2010). Clay swelling - A challenge in the oilfield. Earth-Science Reviews, 98(3–4), 201–216. doi:10.1016/j.earscirev.2009.11.003.

Bell, F. G. (2013). Engineering properties of soils and rocks. Elsevier, Amsterdam, Netherlands. doi:10.1016/C2013-0-01182-6.

NAPA. (1999). Guidelines for use of HMA overlays to rehabilitate PCC pavement. National Asphalt Pavement Association (NAPA), Greenbelt, United States.

Shu, H., Yu, Q., Niu, C., Liu, J., Xia, W., Sun, X., ... & Wang, Q. (2023). Effect of dry-wet cycles on the mechanical properties of saline soil solidified with sulfur-free lignin and hydrophobic polymer. Journal of Building Engineering, 107116. doi:10.1016/j.jobe.2023.107116.

Tiwari, N., Satyam, N., & Singh, K. (2020). Effect of Curing on Micro-Physical Performance of Polypropylene Fiber Reinforced and Silica Fume stabilized Expansive Soil under Freezing Thawing Cycles. Scientific Reports, 10(1), 7624. doi:10.1038/s41598-020-64658-1.

Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. doi:10.1016/j.conbuildmat.2014.10.026.

Nugent, R. A., Zhang, G., & Gambrell, R. P. (2009). Effect of Exopolymers on the Liquid Limit of Clays and Its Engineering Implications. Transportation Research Record: Journal of the Transportation Research Board, 2101(1), 34–43. doi:10.3141/2101-05.

Chang, I., & Cho, G. C. (2012). Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer. Construction and Building Materials, 30, 30–35. doi:10.1016/j.conbuildmat.2011.11.030.

Khatami, H. R., & O’Kelly, B. C. (2013). Improving Mechanical Properties of Sand Using Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 139(8), 1402–1406. doi:10.1061/(asce)gt.1943-5606.0000861.

Theng, B. K. G. (1982). Clay-Polymer Interactions: Summary and Perspectives. Clays and Clay Minerals, 30(1), 1–10. doi:10.1346/ccmn.1982.0300101.

Hussain, F., Hojjati, M., Okamoto, M., & Gorga, R. E. (2006). Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. Journal of Composite Materials, 40(17), 1511–1575. doi:10.1177/0021998306067321.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Usama Heneash, Hossam El-Din Fawzy, Karima Ali, Ali Basha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message