The Effect of Shear Stress on Armor Layer Thickness Under Steady Uniform Flow
Abstract
Doi: 10.28991/CEJ-2023-09-11-012
Full Text: PDF
Keywords
References
Hunziker, R. P., & Jaeggi, M. N. R. (2002). Grain Sorting Processes. Journal of Hydraulic Engineering, 128(12), 1060–1068. doi:10.1061/(asce)0733-9429(2002)128:12(1060).
Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armour ratio. Earth-Science Reviews, 207. doi:10.1016/j.earscirev.2020.103211.
Cooper, J. R., & Tait, S. J. (2009). Water-worked gravel beds in laboratory flumes - A natural analogue? Earth Surface Processes and Landforms, 34(3), 384–397. doi:10.1002/esp.1743.
Yager, E. M., Kenworthy, M., & Monsalve, A. (2015). Taking the river inside: Fundamental advances from laboratory experiments in measuring and understanding bedload transport processes. Geomorphology, 244, 21–32. doi:10.1016/j.geomorph.2015.04.002.
Recking, A. (2013). Simple Method for Calculating Reach-Averaged Bed-Load Transport. Journal of Hydraulic Engineering, 139(1), 70–75. doi:10.1061/(asce)hy.1943-7900.0000653.
Heays, K. G., Friedrich, H., & Melville, B. W. (2014). Laboratory study of gravel-bed cluster formation and disintegration. Water Resources Research, 50(3), 2227–2241. doi:10.1002/2013WR014208.
Ancey, C. (2020). Bedload transport: a walk between randomness and determinism. Part 1. The state of the art. Journal of Hydraulic Research, 58(1), 1–17. doi:10.1080/00221686.2019.1702594.
Wang, L., Wang, D., Cuthbertson, A., Zhong, D., & Pender, G. (2021). Hysteretic Implications for Graded Bed Load Sediment Transport in Symmetrical Hydrograph Flows. Frontiers in Environmental Science, 9. doi:10.3389/fenvs.2021.800832.
Mrokowska, M. M., & Rowinski, P. M. (2019). Impact of unsteady flow events on bedload transport: A review of laboratory experiments. Water (Switzerland), 11(5). doi:10.3390/w11050907.
Negara, A. S., Ikhsan, C., Hadiani, Rr. R., & Purwana, Y. M. (2023). Effect of bed shear stress on the mobile armor layer at the riverbed. IOP Conference Series: Earth and Environmental Science, 1195(1), 012057. doi:10.1088/1755-1315/1195/1/012057.
Chin, C. O., Melville, B. W., & Raudkivi, A. J. (1994). Streambed Armoring. Journal of Hydraulic Engineering, 120(8), 899–918. doi:10.1061/(asce)0733-9429(1994)120:8(899).
Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of armor layers in gravel-bed streams. Geophysical Research Letters, 32(8), 1–4. doi:10.1029/2004GL021772.
Aberle, J., & Nikora, V. (2006). Statistical properties of armored gravel bed surfaces. Water Resources Research, 42(11), 1-11. doi:10.1029/2005WR004674.
Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, D. (2021). Laboratory study on the evolution of gravel-bed surfaces in bed armoring processes. Journal of Hydrology, 597. doi:10.1016/j.jhydrol.2020.125751.
Marion, A., & Fraccarollo, L. (1997). Experimental investigation of mobile armoring development. Water Resources Research, 33(6), 1447–1453. doi:10.1029/97WR00705.
Elgueta-Astaburuaga, M. A., & Hassan, M. A. (2019). Sediment storage, partial transport, and the evolution of an experimental gravel bed under changing sediment supply regimes. Geomorphology, 330, 1–12. doi:10.1016/j.geomorph.2018.12.018.
Church, M., Hassan, M. A., & Wolcott, J. F. (1998). Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations. Water Resources Research, 34(11), 3169–3179. doi:10.1029/98WR00484.
Ikhsan, C., Rahajo, A., & Legono, D. (2014). The formation of static armour layer. International Journal of Civil & Environmental Engineering, 14, 19-23.
Mao, L., Cooper, J. R., & Frostick, L. E. (2011). Grain size and topographical differences between static and mobile armour layers. Earth Surface Processes and Landforms, 36(10), 1321–1334. doi:10.1002/esp.2156.
Spiller, S. M., Rüther, N., & Friedrich, H. (2015). Dynamic lift on an artificial static armor layer during highly unsteady open channel flow. Water (Switzerland), 7(9), 4951–4970. doi:10.3390/w7094951.
Curran, J. C., & Waters, K. A. (2014). The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river. Journal of Geophysical Research: Earth Surface, 119(7), 1484–1497. doi:10.1002/2014JF003143.
Ikhsan, C., Raharjo, A. P., Legono, D., & Kironoto, B. A. (2020). Effek Tegangan Geser dan Keseragaman Butiran terhadap Tebal Armour Layer pada Kondisi Statis di Dasar Saluran. Jurnal Teknik Sipil, 27(3), 247. doi:10.5614/jts.2020.27.3.6. (In Indonesian).
Almedeij, J. H. (2002). Bedload transport in gravel-bed streams under a wide range of Shields stresses. Ph.D. Thesis, Virginia Tech, Blacksburg, United States.
Powell, D. M., Ockelford, A., Rice, S. P., Hillier, J. K., Nguyen, T., Reid, I., Tate, N. J., & Ackerley, D. (2016). Structural properties of mobile armors formed at different flow strengths in gravel-bed rivers. Journal of Geophysical Research: Earth Surface, 121(8), 1494–1515. doi:10.1002/2015JF003794.
Marion, A., Tait, S. J., & McEwan, I. K. (2003). Analysis of small-scale gravel bed topography during armoring. Water Resources Research, 39(12). doi:10.1029/2003WR002367.
Wang, Q., Pan, Y., Yang, K., & Nie, R. (2020). Structural properties of the static armor during formation and reestablishment in gravel-bed rivers. Water (Switzerland), 12(7). doi:10.3390/w12071845.
Graf, W. H., & Altinakar, M. S. (1998). Fluvial hydraulics: Flow and transport processes in channels of simple geometry. Wiley, New York, United States.
26-Lisle, T. E., & Madej, M. A. (1992). Spatial variation in armouring in a channel with high sediment supply. Dynamics of gravel-bed rivers, 277-293. John Wiley & Sons, Hoboken, United States.
Wilcock, P. R., Kenworthy, S. T., & Crowe, J. C. (2001). Experimental study of the transport of mixed sand and gravel. Water Resources Research, 37(12), 3349–3358. doi:10.1029/2001WR000683.
Vericat, D., Batalla, R. J., & Garcia, C. (2006). Breakup and reestablishment of the armour layer in a large gravel-bed river below dams: The lower Ebro. Geomorphology, 76(1–2), 122–136. doi:10.1016/j.geomorph.2005.10.005.
Viparelli, E., Gaeuman, D., Wilcock, P., & Parker, G. (2011). A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River. Water Resources Research, 47(2), 1-22. doi:10.1029/2010WR009164.
Bertin, S., & Friedrich, H. (2018). Effect of surface texture and structure on the development of stable fluvial armors. Geomorphology, 306, 64–79. doi:10.1016/j.geomorph.2018.01.013.
Berni, C., Perret, E., & Camenen, B. (2018). Characteristic time of sediment transport decrease in static armour formation. Geomorphology, 317, 1–9. doi:10.1016/j.geomorph.2018.04.004.
Ardiclioglu, M., Selenica, A., Ozdin, S., Kuriqi, A., & Genç, O. (2013, July). Investigation of average shear stress in natural stream. International Balkans Conference on Challenges of Civil Engineering (BCCCE), 19-21 May, 2011, Tirana, ALBANIA.
Te Chow, V., (1964). Applied Hydrology, International. McGraw-Hill, New York, United States.
DOI: 10.28991/CEJ-2023-09-11-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Cahyono Ikhsan
This work is licensed under a Creative Commons Attribution 4.0 International License.