Convolutional Neural Network for Predicting Failure Type in Concrete Cylinders During Compression Testing

Jose Manuel Palomino Ojeda, Billy Alexis Cayatopa-Calderón, Lenin Quiñones Huatangari, Jose Luís Piedra Tineo, Manuel Emilio Milla Pino, Wilmer Rojas Pintado

Abstract


Cracks in concrete cause structural damage, and it is important to identify and classify them. The objective of the research was to describe the behavior and predict the type of failure in concrete cylinders using convolutional neural networks. The methodology consisted of creating a database of 2650 images of failure types in concrete cylinders tested in compression at the Laboratory of Testing and Strength of Materials of the National University of Jaen, Cajamarca, Peru. To identify cracks on the concrete surface, the database was divided into training (60%), validation (20%), and testing (20%), and a transfer learning approach was developed using the MobileNet, DenseNet121, ResNet50, and VGG16 algorithms from the Keras library, programmed in Python. To validate the performance of each model, the following indicators were used: recall, precision, and F1 score. The results show that the models studied correctly classified the type of failure in concrete with accuracies of 96, 91, 86, and 90%, with the MobileNet algorithm being the best predictor with 96%. The novelty of the study was the development of deep learning algorithms with different architectures that can be used in structural health assessment as an automated and reliable method compared to traditional ones. In addition, these trained algorithms can be used as source code in drones for structural monitoring.

 

Doi: 10.28991/CEJ-2023-09-09-01

Full Text: PDF


Keywords


Concrete; Computer Vision; Deep Learning; Crack Detection; Image Processing.

References


Anjali, R., & Venkatesan, G. (2022). Optimization of mechanical properties and composition of M-sand and pet particle added concrete using hybrid deep neural network-horse herd optimization algorithm. Construction and Building Materials, 347, 128334. doi:10.1016/j.conbuildmat.2022.128334.

Ewida, E. S. S., Mabrouk, R. T., El-Shafey, N., & Torkey, A. M. (2022). Flexural behavior of one-way slabs reinforced with welded wire mesh under vertical loads. Civil Engineering Journal, 8(4), 654-671. doi:10.28991/CEJ-2022-08-04-03.

Laxman, K. C., Tabassum, N., Ai, L., Cole, C., & Ziehl, P. (2023). Automated crack detection and crack depth prediction for reinforced concrete structures using deep learning. Construction and Building Materials, 370, 130709. doi:10.1016/j.conbuildmat.2023.130709.

Song, L., Sun, H., Liu, J., Yu, Z., & Cui, C. (2022). Automatic segmentation and quantification of global cracks in concrete structures based on deep learning. Measurement, 199, 111550. doi:10.1016/j.measurement.2022.111550.

Ren, J., Tian, Z., & Bu, J. (2018). Simulating Tensile and Compressive Failure Process of Concrete with a User-defined Bonded-Particle Model. International Journal of Concrete Structures and Materials, 12(1), 56. doi:10.1186/s40069-018-0292-1.

Li, Y., Li, H., & Wang, H. (2018). Pixel-wise crack detection using deep local pattern predictor for robot application. Sensors (Switzerland), 18(9), 3042. doi:10.3390/s18093042.

Hadinata, P. N., Simanta, D., Eddy, L., & Nagai, K. (2021). Crack Detection on Concrete Surfaces Using Deep Encoder-Decoder Convolutional Neural Network: A Comparison Study Between U-Net and DeepLabV3+. Journal of the Civil Engineering Forum, 7(3), 323. doi:10.22146/jcef.65288.

Nguyen, A., Gharehbaghi, V., Le, N. T., Sterling, L., Chaudhry, U. I., & Crawford, S. (2023). ASR crack identification in bridges using deep learning and texture analysis. Structures, 50, 494–507. doi:10.1016/j.istruc.2023.02.042.

Golding, V. P., Gharineiat, Z., Munawar, H. S., & Ullah, F. (2022). Crack Detection in Concrete Structures Using Deep Learning. Sustainability (Switzerland), 14(13), 8117. doi:10.3390/su14138117.

Mendonça, Y. V., Naranjo, P. G. V., & Pinto, D. C. (2022). The Role of Technology in the Learning Process. Emerging Science Journal, 6(Special Issue), 280-295. doi:10.28991/ESJ-2022-SIED-020.

Jayaraju, P., Somasundaram, K., Suprakash, A. S., & Muthusamy, S. (2022). A Deep Learning- Image Based Approach for Detecting Cracks in Buildings. Traitement Du Signal, 39(4), 1429–1434. doi:10.18280/ts.390437.

Kolappan Geetha, G., Yang, H.-J., & Sim, S.-H. (2023). Fast Detection of Missing Thin Propagating Cracks during Deep-Learning-Based Concrete Crack/Non-Crack Classification. Sensors, 23(3), 1419. doi:10.3390/s23031419.

Islam, M. M., Hossain, M. B., Akhtar, M. N., Moni, M. A., & Hasan, K. F. (2022). CNN Based on Transfer Learning Models Using Data Augmentation and Transformation for Detection of Concrete Crack. Algorithms, 15(8). doi:10.3390/a15080287.

Qiao, W., Ma, B., Liu, Q., Wu, X., & Li, G. (2021). Computer Vision-Based Bridge Damage Detection Using Deep Convolutional Networks with Expectation Maximum Attention Module. Sensors, 21(3), 824. doi:10.3390/s21030824.

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., & Fieguth, P. (2015). A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29(2), 196–210. doi:10.1016/j.aei.2015.01.008.

Abdel-Qader, I., Abudayyeh, O., & Kelly, M. E. (2003). Analysis of Edge-Detection Techniques for Crack Identification in Bridges. Journal of Computing in Civil Engineering, 17(4), 255–263. doi:10.1061/(asce)0887-3801(2003)17:4(255).

Haque, I., Alim, M., Alam, M., Nawshin, S., Noori, S. R. H., & Habib, M. T. (2022). Analysis of recognition performance of plant leaf diseases based on machine vision techniques. Journal of Human, Earth, and Future, 3(1), 129-137. doi:10.28991/HEF-2022-03-01-09.

Adhikari, R. S., Moselhi, O., & Bagchi, A. (2014). Image-based retrieval of concrete crack properties for bridge inspection. Automation in Construction, 39, 180–194. doi:10.1016/j.autcon.2013.06.011.

Dinh, T. H., Ha, Q. P., & La, H. M. (2016). Computer vision-based method for concrete crack detection. 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV). doi:10.1109/icarcv.2016.7838682.

Lee, J., Kim, H.-S., Kim, N., Ryu, E.-M., & Kang, J.-W. (2019). Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network. Sensors, 19(21), 4796. doi:10.3390/s19214796.

Ali, L., Alnajjar, F., Jassmi, H. A., Gocho, M., Khan, W., & Serhani, M. A. (2021). Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures. Sensors, 21(5), 1688. doi:10.3390/s21051688.

Ye, W., Deng, S., Ren, J., Xu, X., Zhang, K., & Du, W. (2022). Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution. Construction and Building Materials, 329, 127157. doi:10.1016/j.conbuildmat.2022.127157.

Li, Y., Bao, T., Xu, B., Shu, X., Zhou, Y., Du, Y., Wang, R., & Zhang, K. (2022). A deep residual neural network framework with transfer learning for concrete dams patch-level crack classification and weakly-supervised localization. Measurement, 188, 110641. doi:10.1016/j.measurement.2021.110641.

Wang, W., & Su, C. (2022). Automatic concrete crack segmentation model based on transformer. Automation in Construction, 139, 104275. doi:10.1016/j.autcon.2022.104275.

Yu, G., Dong, J., Wang, Y., & Zhou, X. (2023). RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation. Sensors, 23(1), 53. doi:10.3390/s23010053.

Chen, L., Chen, W., Wang, L., Zhai, C., Hu, X., Sun, L., Tian, Y., Huang, X., & Jiang, L. (2023). Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images. Engineering Structures, 276, 115306. doi:10.1016/j.engstruct.2022.115306.

Jiang, Y., Pang, D., & Li, C. (2021). A deep learning approach for fast detection and classification of concrete damage. Automation in Construction, 128, 103785. doi:10.1016/j.autcon.2021.103785.

Falaschetti, L., Beccerica, M., Biagetti, G., Crippa, P., Alessandrini, M., & Turchetti, C. (2022). A Lightweight CNN-Based Vision System for Concrete Crack Detection on a Low-Power Embedded Microcontroller Platform. Procedia Computer Science, 207, 3948–3956. doi:10.1016/j.procs.2022.09.457.

Yeşilmen, S., & Tatar, B. (2022). Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: A case study on aggregate mining for concrete production. Case Studies in Construction Materials, 17, 1372. doi:10.1016/j.cscm.2022.e01372.

Kulkarni, U., Meena, S. M., Gurlahosur, S. V., & Bhogar, G. (2021). Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms. Neural Networks, 136, 28–39. doi:10.1016/j.neunet.2020.12.022.

Mao, W.-L., Chen, W.-C., Wang, C.-T., & Lin, Y.-H. (2021). Recycling waste classification using optimized convolutional neural network. Resources, Conservation and Recycling, 164, 105132. doi:10.1016/j.resconrec.2020.105132.

Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, A., Sajid, M., Ahmed, A., & Dar, S. H. (2021). Satellite and Scene Image Classification Based on Transfer Learning and Fine Tuning of ResNet50. Mathematical Problems in Engineering, 2021, 5843816. doi:10.1155/2021/5843816.

Qu, Z., Mei, J., Liu, L., & Zhou, D. Y. (2020). Crack detection of concrete pavement with cross-entropy loss function and improved VGG16 network model. IEEE Access, 8, 54564–54573. doi:10.1109/ACCESS.2020.2981561.

Yu, Y., Samali, B., Rashidi, M., Mohammadi, M., Nguyen, T. N., & Zhang, G. (2022). Vision-based concrete crack detection using a hybrid framework considering noise effect. Journal of Building Engineering, 61, 105246. doi:10.1016/j.jobe.2022.105246.

Wijaya, I. G. P. S., Dwitama, A. P. J., Widiartha, I. B. K., & Putra, S. A. (2020). Classification of Building Cracks Image Using the Convolutional Neural Network Method. 2020 International Conference on Advancement in Data Science, E-Learning and Information Systems (ICADEIS). doi:10.1109/icadeis49811.2020.9276962.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. doi:10.1186/s40537-019-0197-0.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint. doi:10.485550/arXiv.1704.04861.

Cao, Q. H., Nguyen, T. T. H., Nguyen, V. T. K., & Nguyen, X. P. (2023). A Novel Explainable Artificial Intelligence Model in Image Classification problem. arXiv preprint. doi:10.48550/arXiv.2307.04137.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2017.243.

Qassim, H., Verma, A., & Feinzimer, D. (2018). Compressed residual-VGG16 CNN model for big data places image recognition. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). doi:10.1109/ccwc.2018.8301729.

Wu, P., Liu, A., Fu, J., Ye, X., & Zhao, Y. (2022). Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Engineering Structures, 272, 114962. doi:10.1016/j.engstruct.2022.114962.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jose Manuel Palomino Ojeda, Billy Alexis Cayatopa Calderon, Lenin Quiñones Huantangari, Jose Luis Piedra Tineo, Manuel Emilio Milla Pino, Wilmer Rojas Pintado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message