Experimental Study on Hollow Steel Sections Under Elevated Temperature
Downloads
Doi: 10.28991/CEJ-2024-010-03-014
Full Text: PDF
Downloads
[2] Zhong, Y., Su, A., & Zhao, O. (2023). Post-fire local buckling behaviour of cold-formed S700 high strength steel circular hollow sections under axial compression: Experiments, modelling and design. Thin-Walled Structures, 184, 110511. doi:10.1016/j.tws.2022.110511.
[3] Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447. doi:10.1002/pse.51.
[4] Vishal, M., & Satyanarayanan, K. S. (2022). Experimental investigation on the heat dissipation and postfire structural performance of a reinforced concrete column with biomimicked geometry. Fire, 5(6), 205. doi:10.3390/fire5060205.
[5] Huang, B., Qiu, X., Zhu, J., Song, H., & Zhang, Z. (2023). Residual performance of compression stiffened welded hollow spherical joints after exposure to elevated temperatures. Journal of Constructional Steel Research, 208, 108001. doi:10.1016/j.jcsr.2023.108001.
[6] Agha, A., Shibani, A., Hassan, D., & Zalans, B. (2021). Modular construction in the United Kingdom housing sector: barriers and implications. Journal of Architectural Engineering Technology, 10(2), 236.
[7] Vishal, M., & Satyanarayanan, K. S. (2023). Study on optimum concrete cover thickness in RC beam and columns under high temperature. Journal of Structural Fire Engineering, 14(4), 461–480. doi:10.1108/JSFE-11-2022-0035.
[8] Ferdous, W., Bai, Y., Ngo, T. D., Manalo, A., & Mendis, P. (2019). New advancements, challenges and opportunities of multi-storey modular buildings – A state-of-the-art review. Engineering Structures, 183, 883–893. doi:10.1016/j.engstruct.2019.01.061.
[9] Cao, X., Li, X., Zhu, Y., & Zhang, Z. (2015). A comparative study of environmental performance between prefabricated and traditional residential buildings in China. Journal of Cleaner Production, 109, 131–143. doi:10.1016/j.jclepro.2015.04.120.
[10] Weerasinghe, P., Samarasinghe, T., Gunawardena, T., Nguyen, K., Mendis, P., Ngo, T., & Aye, L. (2018). An optimum construction strategy for multi-story residential prefabricated modular buildings. ZEMCH 2018 International Conference, 29-1 January, 2018, Melbourne, Australia.
[11] Boafo, F. E., Kim, J. H., & Kim, J. T. (2016). Performance of modular prefabricated architecture: Case study-based review and future pathways. Sustainability, 8(6), 558. doi:10.3390/su8060558.
[12] Bertram, N., Fuchs, S., Mischke, J., Palter, R., Strube, G., & Woetzel, J. (2019). Modular construction: From projects to products. McKinsey & Company, New York, United States.
[13] Kalam, L. (2021). Finite Element Analysis of Complex Vectorbloc Beam-Column Connections. Ph.D. Thesis, University of Windsor, Windsor, Canada.
[14] Lee, J., & Kim, J. (2017). BIM-Based 4d simulation to improve module manufacturing productivity for sustainable building projects. Sustainability (Switzerland), 9(3), 426. doi:10.3390/su9030426.
[15] Kamali, M., & Hewage, K. (2016). Life cycle performance of modular buildings: A critical review. Renewable and Sustainable Energy Reviews, 62, 1171–1183. doi:10.1016/j.rser.2016.05.031.
[16] Wu, C., Zhou, Y., Liu, J., Mou, B., & Shi, J. (2021). Experimental and finite element analysis of modular prefabricated composite beam-column interior joints. Journal of Building Engineering, 43(May), 102853. doi:10.1016/j.jobe.2021.102853.
[17] Kumar, W., Sharma, U. K., & Pathak, P. (2023). Comparison of mechanical and structural performance of fire-resistant steels at elevated temperatures. Structures, 48, 478–491. doi:10.1016/j.istruc.2022.12.103.
[18] Kim, S., Hong, W. K., Kim, J. H., & Kim, J. T. (2013). The development of modularized construction of enhanced precast composite structural systems (Smart Green frame) and its embedded energy efficiency. Energy and Buildings, 66, 16–21. doi:10.1016/j.enbuild.2013.07.023.
[19] Nahmens, I., & Ikuma, L. H. (2012). Effects of lean construction on sustainability of modular homebuilding. Journal of architectural engineering, 18(2), 155–163. doi:10.1061/(asce)ae.1943-5568.0000054.
[20] Ramaji, I. J., & Memari, A. M. (2013). Identification of structural issues in design and construction of multi-story modular buildings. Proceedings of the 1st residential building design and construction conference, 20-21 February, 2013, Bethlehem, United States.
[21] Harrison, B. F. (2003). Blast resistant modular buildings for the petroleum and chemical processing industries. In Journal of Hazardous Materials, 104(1–3), 31–38. doi:10.1016/S0304-3894(03)00232-2.
[22] CCHPR (2023). CCHPR Launches New Report on Modular Homes. Department of Land Economy, University of Cambridge, Cambridge, United Kingdom. Available online: https://www.landecon.cam.ac.uk/news/cchpr-launches-new-report-modular-homes (accessed in October 2023).
[23] Yu, Y., Tian, P., Man, M., Chen, Z., Jiang, L., & Wei, B. (2021). Experimental and numerical studies on the fire-resistance behaviors of critical walls and columns in modular steel buildings. Journal of Building Engineering, 44(July), 102964. doi:10.1016/j.jobe.2021.102964.
[24] Arrais, F., Lopes, N., & Vila Real, P. (2023). Fire design of stainless steel columns with hollow circular and elliptical sections. Journal of Constructional Steel Research, 210, 108085. doi:10.1016/j.jcsr.2023.108085.
[25] Chen, Z., Liu, J., & Yu, Y. (2017). Experimental study on interior connections in modular steel buildings. Engineering Structures, 147, 625–638. doi:10.1016/j.engstruct.2017.06.002.
[26] Gardner, L., Saari, N., & Wang, F. (2010). Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections. Thin-Walled Structures, 48(7), 495–507. doi:10.1016/j.tws.2010.02.003.
[27] Mohammed, A., & Afshan, S. (2023). Modelling and design of stainless steel hollow section beam-column members in fire. International Journal of Steel Structures, 23(1), 120–138. doi:10.1007/s13296-022-00683-2.
[28] Yan, J. B., Cao, J., Xie, P., Li, N., & Xie, J. (2023). Circular hollow stainless-steel tubes subjected to low-temperature eccentric compression loads. Structures, 54, 1164–1178. doi:10.1016/j.istruc.2023.05.092.
[29] Gatheeshgar, P., Poologanathan, K., Gunalan, S., Shyha, I., Sherlock, P., Rajanayagam, H., & Nagaratnam, B. (2021). Development of affordable steel-framed modular buildings for emergency situations (Covid-19). Structures, 31(2121), 862–875. doi:10.1016/j.istruc.2021.02.004.
[30] AISI S100-16. (2016). North American Specification Steel Structural Members. American Iron and Steel Institute, Washington, United States.
[31] EN 1991-1-7. (2006). Eurocode 1: Action on structures - Part 1-7: General actions - Accidental actions. European Committee for standardization, Brussels, Belgium.
[32] Kesawan, S., & Mahendran, M. (2018). Post-fire mechanical properties of cold-formed steel hollow sections. Construction and Building Materials, 161, 26–36. doi:10.1016/j.conbuildmat.2017.11.077.
[33] Luo, F. J., Ding, C., Styles, A., & Bai, Y. (2019). End plate–stiffener connection for SHS column and RHS beam in steel-framed building modules. International Journal of Steel Structures, 19(4), 1353–1365. doi:10.1007/s13296-019-00214-6.
[34] IS:800-2007. (2007). Indian Standard Code of Practice for General Construction in Steel. Bureau of Indian Standards, New Delhi, India.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.