Assessing Artificial Recharge on Groundwater Quantity Using Wells Recharge

Waqed H. Hassan, Zainab N. Ghazi

Abstract


In arid and semi-arid countries like Iraq, which suffer from water scarcity due to the effects of climate change and decreased surface water flow, groundwater is considered a vital source of irrigation water. This study is concerned with the influence of artificial recharge on the rehabilitation of the unconfined aquifer called Al-Dibdibba, located between the cities of Najaf and Kerbala in central Iraq around 31°550′ N and 32°450′ N and 43°300′ E and 44°300′ E. Due to excessive groundwater pumping rates for irrigation, this aquifer has suffered from groundwater decline and increased salinization during the previous 20 years. By establishing a conceptual model in the groundwater modeling system software (GMS), a numerical model was made to simulate groundwater flow. Artificial recharge using recycled water (tertiary treatment) from Kerbala's primary WWTP was carried out using 25 injection wells. The model was calibrated against historical and observed water level data for periods from 2016 to 2017. Three scenarios to predict how the aquifer would act with artificial recharge of 5%, 8%, and 10% from the total daily outflow of the WWTP in Kerbala (100000 m3/day) were studied. The calibration model met the observed values of groundwater levels with R2 = 0.989 for steady-state simulations and R2 = 0.987 for transient simulations. In the final analysis of the simulation, the results show that the maximum predicted groundwater level was raised by the injection of treated water through 25 wells by 1.05 m for 5000 m3/day, 2 m for 8000 m3/day, and 3 m for 10,000 m3/day recharge pumping rates. In addition, if water were pumped into the aquifer, it might support the development of agricultural lands covering more than 93 km2. So, artificial recharge can be considered one of the important solutions to adaptation to the effects of climate change and desertification in Iraq.

 

Doi: 10.28991/CEJ-2023-09-09-010

Full Text: PDF


Keywords


Artificial Recharge; Groundwater; Dibdibba Aquifer; Treated Wastewater; GMS.

References


Hassan, W. H. (2020). Climate change impact on groundwater recharge of Umm er Radhuma unconfined aquifer Western Desert, Iraq. International Journal of Hydrology Science and Technology, 10(4), 392–412. doi:10.1504/IJHST.2020.108268.

Shahid, S., Alamgir, M., Wang, X., & Eslamian, S. (2017). Climate Change Impacts on and Adaptation to Groundwater. Handbook of Drought and Water Scarcity, 107–124, CRC Press, Boca Raton, United States. doi:10.1201/9781315226781-6.

Hassan, W. H., & Nile, B. K. (2021). Climate change and predicting future temperature in Iraq using CanESM2 and HadCM3 modeling. Modeling Earth Systems and Environment, 7(2), 737–748. doi:10.1007/s40808-020-01034-y.

Maliva, R. (2021). Introduction to Climate Change and Groundwater. In: Climate Change and Groundwater: Planning and Adaptations for a Changing and Uncertain Future. Springer Hydrogeology. Springer, Cham, Switzerland. doi:10.1007/978-3-030-66813-6_1.

Hassan, W. H. (2021). Climate change projections of maximum temperatures for southwest Iraq using statistical downscaling. Climate Research, 83(83), 187–200. doi:10.3354/cr01647.

Harter, T. (2015). Basic Concepts of Groundwater Hydrology, ANR Publication 8083, FWQP Reference Sheet 11.1, University of California, Oakland, United States.

Hassan, W. H., Attea, Z. H., & Mohammed, S. S. (2020). Optimum layout design of sewer networks by hybrid genetic algorithm. Journal of Applied Water Engineering and Research, 8(2), 108–124. doi:10.1080/23249676.2020.1761897.

Zamil, H. (2017). Groundwater Investigation in Iraqi Marshland Area. Diyala Journal for Pure Science, 13(3), 12–29. doi:10.24237/djps.1303.199a.

Dhungel, R., & Fiedler, F. (2016). Water balance to recharge calculation: Implications for watershed management using systems dynamics approach. Hydrology, 3(1), 13. doi:10.3390/hydrology3010013.

Al-Sudani, H. I. Z. (2019). Groundwater system of Dibdibba sandstone aquifer in south of Iraq. Applied Water Science, 9(4), 72. doi:10.1007/s13201-019-0952-6.

Mohammed, M. H., Zwain, H. M., & Hassan, W. H. (2021). Modeling the impacts of climate change and flooding on sanitary sewage system using SWMM simulation: A case study. Results in Engineering, 12(100307). doi:10.1016/j.rineng.2021.100307.

Hassan, W. H., Hussein, H. H., & Nile, B. K. (2022). The effect of climate change on groundwater recharge in unconfined aquifers in the western desert of Iraq. Groundwater for Sustainable Development, 16. doi:10.1016/j.gsd.2021.100700.

Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology Journal, 10(1), 121–142. doi:10.1007/s10040-001-0182-4.

Voudouris, K., Diamantopoulou, P., Giannatos, G., & Zannis, P. (2006). Groundwater recharge via deep boreholes in the Patras Industrial Area aquifer system (NW Peloponnesus, Greece). Bulletin of Engineering Geology and the Environment, 65(3), 297–308. doi:10.1007/s10064-005-0036-8.

Rambags, F., Raat, K. J., Zuurbier, K. G., van den Berg, G. A., & Hartog, N. (2013). Aquifer Storage and Recovery (ASR). Design and operational experiences for water storage. Geochemistry, 27, 2435-2452.

Arya, S., Subramani, T., & Karunanidhi, D. (2020). Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environmental Earth Sciences, 79(5), 102. doi:10.1007/s12665-020-8832-9.

Mohsen, K. A., Nile, B. K., & Hassan, W. H. (2020). Experimental work on improving the efficiency of storm networks using a new galley design filter bucket. IOP Conference Series: Materials Science and Engineering, 671(1), 012094. doi:10.1088/1757-899x/671/1/012094.

Hassan, W. H., & Jalal, H. K. (2021). Prediction of the depth of local scouring at a bridge pier using a gene expression programming method. SN Applied Sciences, 3(2), 159. doi:10.1007/s42452-020-04124-9.

Kadam, A. K., Patil, S. N., Gaikwad, S. K., Wagh, V. M., Patil, B. D., & Patil, N. S. (2023). Demarcation of subsurface water storage potential zone and identification of artificial recharge site in Vel River watershed of western India: integrated geospatial and hydrogeological modeling approach. Modeling Earth Systems and Environment, 9(3), 3263–3278. doi:10.1007/s40808-022-01656-4.

Al-Kakey, O. H., Othman, A. A., & Merkel, B. J. (2022). Identifying potential sites for artificial groundwater recharge using GIS and AHP techniques: A case study of Erbil basin, Iraq. Kuwait Journal of Science. doi:10.48129/kjs.11917.

Chellamuthu Ranganathan, P., Chuluke, D., Chena, D., & Senapathi, V. (2022). Artificial recharge techniques in coastal aquifers. Groundwater Contamination in Coastal Aquifers, 279–283, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-824387-9.00020-7.

Al-Assa’d, T. A., & Abdulla, F. A. (2010). Artificial groundwater recharge to a semi-arid basin: Case study of Mujib aquifer, Jordan. Environmental Earth Sciences, 60(4), 845–859. doi:10.1007/s12665-009-0222-2.

Hassan, W. H., Ghanim, A. A. J., Mahdi, K., Adham, A., Mahdi, F. A., Nile, B. K., Riksen, M., & Ritsema, C. (2023). Effect of Artificial (Pond) Recharge on the Salinity and Groundwater Level in Al-Dibdibba Aquifer in Iraq Using Treated Wastewater. Water (Switzerland), 15(4), 695. doi:10.3390/w15040695.

Hussain, F., Hussain, R., Wu, R. S., & Abbas, T. (2019). Rainwater harvesting potential and utilization for artificial recharge of groundwater using recharge wells. Processes, 7(9), 623. doi:10.3390/pr7090623.

Jalal, H. K., & Hassan, W. H. (2020). Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. IOP Conference Series: Materials Science and Engineering, 745, 012150. doi:10.1088/1757-899x/745/1/012150.

Al-Abadi, A. M., Handhal, A. M., & Al-Ginamy, M. A. (2020). Evaluating the Dibdibba Aquifer Productivity at the Karbala–Najaf Plateau (Central Iraq) Using GIS-Based Tree Machine Learning Algorithms. Natural Resources Research, 29(3), 1989–2009. doi:10.1007/s11053-019-09561-x.

Al-Aboodi, A. H., Ibrahim, H. T., & Ibrahim, N. (2019). Estimation of groundwater recharge in Safwan-Zubair area, South of Iraq, using water balance and inverse modeling methods. International Journal of Civil Engineering Technology, 10, 202-210.

Al-Mussawi, W. H. (2008). Kriging of groundwater level-a case study of Dibdiba Aquifer in area of Karballa-Najaf. journal of kerbala university, 6(1), 170-182.

Elasha, B. O. (2010). Mapping of climate change threats and human development impacts in the Arab region. UNDP Arab Development Report–Research Paper Series, Regiona Bureau for the Arab States, United Nations Development Programme, New York, United States.

Hassan, W. H., & Hashim, F. S. (2021). Studying the impact of climate change on the average temperature using CanESM2 and HadCM3 modelling in Iraq. International Journal of Global Warming, 24(2), 131–148. doi:10.1504/IJGW.2021.115898.

Horriche, F. J., & Benabdallah, S. (2020). Assessing aquifer water level and salinity for a managed artificial recharge site using reclaimed water. Water (Switzerland), 12(2), 341. doi:10.3390/w12020341.

Cazurra, T. (2008). Water reuse of south Barcelona’s wastewater reclamation plant. Desalination, 218(1–3), 43–51. doi:10.1016/j.desal.2006.12.019.

Hassan, W. H., & Khalaf, R. M. (2020). Optimum Groundwater use Management Models by Genetic Algorithms in Karbala Desert, Iraq. IOP Conference Series: Materials Science and Engineering, 928(2), 022141. doi:10.1088/1757-899x/928/2/022141.

Gale, I., Neumann, I., Calow, R., & Moench, D. M. (2002). The effectiveness of Artificial Recharge of groundwater: a review. British Geological Survey, Nottingham, United Kingdom.

Sheng, Z. (2005). An aquifer storage and recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. Journal of Environmental Management, 75(4), 367–377. doi:10.1016/j.jenvman.2004.10.007.

Abdulameer, A., Thabit, J. M., Kanoua, W., Wiche, O., & Merkel, B. (2021). Possible sources of salinity in the upper Dibdibba aquifer, Basrah, Iraq. Water (Switzerland), 13(4), 578. doi:10.3390/w13040578.

Hassan, W. H., Nile, B. K., Mahdi, K., Wesseling, J., & Ritsema, C. (2021). A feasibility assessment of potential artificial recharge for increasing agricultural areas in the Karbala desert in Iraq using numerical groundwater modeling. Water (Switzerland), 13(22), 3167. doi:10.3390/w13223167.

Doherty, J. E., Hunt, R. J., & Tonkin, M. J. (2011). Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis. US Department of the Interior, US Geological Survey, Reston, United States.

Al-Ghanimy, M. A. (2018). Assessment of Hydrogeological Condition in Karbala—Najaf Plateau, Iraq. Ph.D. Thesis, University of Baghdad, Baghdad, Iraq.

Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied groundwater modeling: simulation of flow and advective transport. Academic Press, Cambridge, United States

Hashemi, H. (2012). Steady-State Unconfined Aquifer Simulation of the Gareh-Bygone Plain, Iran. The Open Hydrology Journal, 6(1), 58–67. doi:10.2174/1874378101206010058.

Abed, B. S., & Hussain, M. R. (2020). Quantitative and qualitative assessment of groundwater: the case of Khanaqin alluvial Iraq. Journal of Engineering Science and Technology, 15(6), 4339-4355.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-09-010

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Waqed H. Hassan, Zainab Ghazi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message