Modelling Flood Wave Propagation as a Result of Dam Piping Failure Using 2D-HEC-RAS

Mahmood J. Mohamed, Ibtisam R. Karim, Mohammed Y. Fattah, Nadhir Al-Ansari


In recent years, there has been a serious request for innovative, accurate approaches to be determined and controlled for dam failures. The present study aims to explore and evaluate the flood wave parameters that result from a dam break due to piping failure occurring in the body of the dam and routing the flood waves. Mosul Dam, which lies in the north of Iraq, and a reach of the Tigris River downstream the dam to Samarra Barrage at about 470 km are selected as a case study. A two-dimensional Hydrologic Engineering Center River Analysis System (2D HEC-RAS) and the Geographic Information System (GIS) have been supposed to be suitable for development calculations of the flood wave parameters based on the Digital Elevation Model (DEM) and land cover satellite images that enhance the calculations. The reservoir and two-dimensional flow area are delineated and incorporated with DEM. Manning`s coefficient for the whole area has been extracted according to the Land Cover satellite image, which showed that its value ranges between 0.025 to 0.037 with a correlation coefficient R2equal to 0.845 and 0.801 for the calibration and validation processes, respectively. The results of the scenario display a substantial performance of the maps produced from the model that represented the depth, velocity, and water surface elevation. All the maximum values of dam break parameters lie near the dam body and slightly decrease downstream. It is pre-eminent that the 2D HEC-RAS model is appropriate for analyzing and simulating the occurrence of dam breaches by visualizing the distribution of flood wave depth and velocities in two dimensions. Hence, the clear improvement in producing maps, which monitor the spread of hydrodynamic waves, gives an indication of risk areas that are threatened by inundation and aids in the formulation of emergency plans.


Doi: 10.28991/CEJ-2023-09-10-010

Full Text: PDF


2D HEC-RAS; Mosul Dam; Flood Wave; Piping Failure.


Luo, Y., Chen, L., Xu, M., & Tong, X. (2012). Review of dam-break research of earth-rock dam combining with dam safety management. Procedia Engineering, 28, 382–388. doi:10.1016/j.proeng.2012.01.737.

Talukdar, P., & Dey, A. (2019). Hydraulic failures of earthen dams and embankments. Innovative Infrastructure Solutions, 4(1), 42. doi:10.1007/s41062-019-0229-9.

Haltas, I., Tayfur, G., & Elci, S. (2016). Two-dimensional numerical modeling of flood wave propagation in an urban area due to Ürkmez dam-break, İzmir, Turkey. Natural Hazards, 81(3), 2103–2119. doi:10.1007/s11069-016-2175-6.

Amini, A., Arya, A., Eghbalzadeh, A., & Javan, M. (2017). Peak flood estimation under overtopping and piping conditions at Vahdat Dam, Kurdistan Iran. Arabian Journal of Geosciences, 10(6), 127. doi:10.1007/s12517-017-2854-y.

Albu, L. M., Enea, A., Iosub, M., & Breaban, I. G. (2020). Dam breach size comparison for flood simulations. A HEC-RAS based, GIS Approach for Dracsani Lake, Sitna river, Romania. Water (Switzerland), 12(4), 1090. doi:10.3390/W12041090.

Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., & Zinabdin, N. (2020). Application of HEC-RAS (2D) for Flood Hazard Maps Generation for Yesil (Ishim) River in Kazakhstan. Water, 12(10), 2672. doi:10.3390/w12102672.

Kumar, N., Kumar, M., Sherring, A., Suryavanshi, S., Ahmad, A., & Lal, D. (2020). Applicability of HEC-RAS 2D and GFMS for flood extent mapping: a case study of Sangam area, Prayagraj, India. Modeling Earth Systems and Environment, 6(1), 397–405. doi:10.1007/s40808-019-00687-8.

Mohammed, L. A., Khassaf, S. I., & Al-Murshidi, K. R. (2019). Application HEC-RAS Model to Simulate the Flood Wave Due to Dam Failure. 4th Scientific International Conference Najaf (SICN). doi:10.1109/sicn47020.2019.9019369.

Harsanto, P., Nursetiawan, Kamiel, B. P., & Cahyani, I. (2021). Riverbed Erosion Analysis of Winongo River Using HEC-RAS 5.0.7. IOP Conference Series: Earth and Environmental Science, 933(1), 012026. doi:10.1088/1755-1315/933/1/012026.

Sarchani, S., Seiradakis, K., Coulibaly, P., & Tsanis, I. (2020). Flood inundation mapping in an ungauged basin. Water (Switzerland), 12(6), 1532. doi:10.3390/W12061532.

Karim, I. R., Hassan, Z. F., Abdullah, H. H., & Alwan, I. A. (2021). 2D-Hec-Ras Modeling of Flood Wave Propagation in a Semi-Arid Area Due to Dam Overtopping Failure. Civil Engineering Journal, 7(9), 1501–1514. doi:10.28991/cej-2021-03091739.

Hosseinzadeh-Tabrizi, S. A., Ghaeini-Hessaroeyeh, M., & Ziaadini-Dashtekhaki, M. (2022). Numerical simulation of dam-breach flood waves. Applied Water Science, 12(5), 1–9. doi:10.1007/s13201-022-01623-5.

Mo, C., Shen, Y., Lei, X., Ban, H., Ruan, Y., Lai, S., Cen, W., & Xing, Z. (2023). Simulation of one-dimensional dam-break flood routing based on HEC-RAS. Frontiers in Earth Science, 10, 1–15. doi:10.3389/feart.2022.1027788.

Paşa, Y., Peker, I. B., Hacı, A., & Gülbaz, S. (2023). Dam failure analysis and flood disaster simulation under various scenarios. Water Science and Technology, 87(5), 1214–1231. doi:10.2166/wst.2023.052.

Mohamed, M., Karim, I., & Fattah, M. (2023). Impact of Dam Materials and Hydraulic Properties on Developing the Breaching Dimensions. Engineering and Technology Journal, 41(5), 716–723. doi:10.30684/etj.2023.138009.1368.

Ministry of Water Resource in Iraq. (2019). General directorate of water resources management, hydrological studies center, Baghdad, Iraq.

Al-Ansari, N., Adamo, N., Al-Hamdani, M. R., Sahar, K., & Al-Naemi, R. E. A. (2021). Mosul Dam Problem and Stability. Engineering, 13(03), 105–124. doi:10.4236/eng.2021.133009.

Alwan, I., Majeed, Z., & Abbas, A. (2021). Water Flow Simulation of Tigris River Between Samara and Baghdad Based on HEC-RAS Model. Engineering and Technology Journal, 39(12), 1882–1893. doi:10.30684/etj.v39i12.1804.

USGS (2023). Website Metadata from Satellite Image. Available online: (accessed on September 2023).

Nama, A. H., Abbas, A. S., & Maatooq, J. S. (2022). Field and Satellite Images-Based Investigation of Rivers Morphological Aspects. Civil Engineering Journal (Iran), 8(7), 1339–1357. doi:10.28991/CEJ-2022-08-07-03.

EM 1110-2-1146. (1993). River Hydraulics. Engineer Manual, US Army Corps of Engineers (USACE), Washington, United States.

Mhmood, H. H., Yilmaz, M., & Sulaiman, S. O. (2023). Simulation of the flood wave caused by hypothetical failure of the Haditha Dam. Journal of Applied Water Engineering and Research, 11(1), 66–76. doi:10.1080/23249676.2022.2050312.

Altawash, M. M., & Al Thamiry, H. A. (2022). Velocity Patterns inside the Proposed Makhool Dam Reservoir with Different Operation Plans. IOP Conference Series: Earth and Environmental Science, 1120(1). doi:10.1088/1755-1315/1120/1/012015.

Bozkuş, Z. & Bağ, F. (2011). Virtual Failure Analysis of the Çınarcık Dam. Teknik Dergi, 22 (110), 1537-1549.

Froehlich, D. C. (2008). Embankment Dam Breach Parameters and Their Uncertainties. Journal of Hydraulic Engineering, 134(12), 1708–1721. doi:10.1061/(asce)0733-9429(2008)134:12(1708).

Brunner, G.W. (2016). HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 1.0.; Hydrologic Engineering Center: Davis, California, United States.

USACE (2022). HEC-RAS River Analysis System. User's Manual, Version 6.2, Hydrologic Engineering Center. US Army Corps of Engineers (USACE), Washington, United States.

Ministry of Water Resources. (2020). Records of Field Observations Data. State department of the operation of irrigation and deraigned projects, Baghdad, Iraq.

Al-Taiee, T. M., & Rasheed, A. M. (2009). Simulation Tigris River flood wave in Mosul city due to a hypothetical Mosul dam break. Damascus University Journal, 25(2), 17-36.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-10-010


  • There are currently no refbacks.

Copyright (c) 2023 Mahmood Jasim Mohammed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.