Creep Behavior of Fiber Reinforced Mortars and Its Effect to Reduce the Differential Shrinkage Stress

Senot Sangadji, Endah Safitri, Muhammad Z. Arifin, Stefanus A. Kristiawan


This research aims to develop durable repair materials that can resist shrinkage cracking by exploring the role of creep in reducing shrinkage stress. In this regard, the creep effect can only be quantified if an accurate creep prediction model and theoretical analysis of the shrinkage stress in the patch repair system exist. For this purpose, the research was carried out in the following sequences: first, the research investigated the short-term creep of the patch repair materials containing accelerator and micro-synthetic fibers in the 0.00–0.12% volume fraction range. This short-term creep was measured on five-cylinder specimens (having a diameter of 75 mm and a height of 275 mm). Three specimens were used to determine the deformation of the repair material under unloading conditions, while those remaining were used to determine the total deformation under loading conditions. The amount of creep deformation was determined by taking away the unloaded (shrinkage) and instantaneous (elastic) deformations from the total deformation of the loaded specimens. Secondly, a modified prediction model of ACI 209R-08 is introduced to accurately capture the rate and magnitude of the observed creep of the repair materials. Finally, a formulated theoretical analysis of shrinkage stress in the patch repair system was proposed to examine how creep potentially reduces the repair material's cracking tendency. The results show that the asymptotic value of the creep curve is attained at an earlier age and that its magnitude is greater than that of most concrete. The modified ACI 209R-08 prediction model can closely estimate the repair materials' creep behavior. The best-fit line, residual values, and coefficient of error analyses confirm the modified model's prediction accuracy. The analysis of tensile stress development in the repair layer suggests that creep can reduce stress by up to 50%. With such a reduction, the repair material is expected to be durable in resisting shrinkage and cracking tendency.


Doi: 10.28991/CEJ-2023-09-08-014

Full Text: PDF


Creep; Fiber; Prediction Model; Repair Material; Differential Shrinkage Stress.


Penttala, V. (2009). Causes and mechanisms of deterioration in reinforced concrete. Failure, Distress and Repair of Concrete Structures, 3–31, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781845697037.1.3.

Wittmann, F. H., & Martinola, G. (2003). Durable Overlay Systems with Engineered Cementitious Composites (ECC). Restoration of Buildings and Monuments, 9(3), 235–264. doi:10.1515/rbm-2003-5760.

Matthews, S. (2007). CONREPNET: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures. Journal of Building Appraisal, 3(1), 6–20. doi:10.1057/palgrave.jba.2950063.

Baluch, M. H., Rahman, M. K., & Al-Gadhib, A. H. (2002). Risks of Cracking and Delamination in Patch Repair. Journal of Materials in Civil Engineering, 14(4), 294–302. doi:10.1061/(asce)0899-1561(2002)14:4(294).

Zhou, J., Ye, G., Schlangen, E., & van Breugel, K. (2008). Modelling of stresses and strains in bonded concrete overlays subjected to differential volume changes. Theoretical and Applied Fracture Mechanics, 49(2), 199–205. doi:10.1016/j.tafmec.2007.11.006.

Safitri, E., Kusworo, R. A., & Kristiawan, S. A. (2023). Shrinkage of Micro-Synthetic Fiber-Reinforced Mortar. Infrastructures, 8(1), 7. doi:10.3390/infrastructures8010007.

Shen, D., Liu, C., Luo, Y., Shao, H., Zhou, X., & Bai, S. (2023). Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers. Cement and Concrete Composites, 138, 104948. doi:10.1016/j.cemconcomp.2023.104948.

Yücel, H. E., Dutkiewicz, M., & Yıldızhan, F. (2022). Application of ECC as a Repair/Retrofit and Pavement/Bridge Deck Material for Sustainable Structures: A Review. Materials, 15(24), 8752. doi:10.3390/ma15248752.

Banthia, N., Gupta, R., & Mindess, S. (2006). Development of fiber reinforced concrete repair materials. Canadian Journal of Civil Engineering, 33(2), 126–133. doi:10.1139/l05-093.

Bhutta, A., Farooq, M., & Banthia, N. (2019). Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Construction and Building Materials, 215, 605–612. doi:10.1016/j.conbuildmat.2019.04.210.

Zanotti, C., Rostagno, G., & Tingley, B. (2018). Further evidence of interfacial adhesive bond strength enhancement through fiber reinforcement in repairs. Construction and Building Materials, 160, 775–785. doi:10.1016/j.conbuildmat.2017.12.140.

Liu, C., Shen, D., Yang, X., Shao, H., Tang, H., & Cai, L. (2023). Early-age properties and shrinkage induced stress of ultra-high-performance concrete under variable temperature and uniaxial restrained condition. Construction and Building Materials, 384, 131382. doi:10.1016/j.conbuildmat.2023.131382.

Pena, P. V. C., Ferreira, R. A. dos R., Santos, A. C. dos, & Oliveira, A. M. de. (2023). Analysis of the compressive creep strain of the concretes with steel fibers: A holistic view in micro and macro scale. Journal of Building Engineering, 71, 106436. doi:10.1016/j.jobe.2023.106436.

Huang, Y., Wang, J., Wei, Q., Shang, H., & Liu, X. (2023). Creep behaviour of ultra-high-performance concrete (UHPC): A review. Journal of Building Engineering, 69, 106187. doi:10.1016/j.jobe.2023.106187.

Acker, P., & Ulm, F. J. (2001). Creep and shrinkage of concrete: Physical origins and practical measurements. Nuclear Engineering and Design, 203(2–3), 143–158. doi:10.1016/S0029-5493(00)00304-6.

Wyrzykowski, M., Scrivener, K., & Lura, P. (2019). Basic creep of cement paste at early age - the role of cement hydration. Cement and Concrete Research, 116, 191–201. doi:10.1016/j.cemconres.2018.11.013.

Suwanmaneechot, P., Aili, A., & Maruyama, I. (2020). Creep behavior of C-S-H under different drying relative humidities: Interpretation of microindentation tests and sorption measurements by multi-scale analysis. Cement and Concrete Research, 132, 106036. doi:10.1016/j.cemconres.2020.106036.

Gan, Y., Romero Rodriguez, C., Zhang, H., Schlangen, E., van Breugel, K., & Šavija, B. (2021). Modeling of microstructural effects on the creep of hardened cement paste using an experimentally informed lattice model. Computer-Aided Civil and Infrastructure Engineering, 36(5), 560–576. doi:10.1111/mice.12659.

Delsaute, B., Torrenti, J. M., & Staquet, S. (2021). Prediction of the basic creep of concrete with high substitution of Portland cement by mineral additions at early age. Structural Concrete, 22(S1), E563–E580. doi:10.1002/suco.201900313.

Kristiawan, S. A., & Nugroho, A. P. (2017). Creep Behaviour of Self-compacting Concrete Incorporating High Volume Fly Ash and its Effect on the Long-term Deflection of Reinforced Concrete Beam. Procedia Engineering, 171, 715–724. doi:10.1016/j.proeng.2017.01.416.

Sheng, Y., Xue, B., Li, H., Qiao, Y., Chen, H., Fang, J., & Xu, A. (2017). Preparation and Performance of a New-Type Alkali-Free Liquid Accelerator for Shotcrete. Advances in Materials Science and Engineering, 2017. doi:10.1155/2017/1264590.

Zhang, Y., & Kong, X. (2014). Influences of superplasticizer, polymer latexes and asphalt emulsions on the pore structure and impermeability of hardened cementitious materials. Construction and Building Materials, 53, 392–402. doi:10.1016/j.conbuildmat.2013.11.104.

Huang, H., Qian, C., Zhao, F., Qu, J., Guo, J., & Danzinger, M. (2016). Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete. Construction and Building Materials, 110, 293–299. doi:10.1016/j.conbuildmat.2016.02.041.

Cartuxo, F., De Brito, J., Evangelista, L., Jiménez, J. R., & Ledesma, E. F. (2015). Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer. Construction and Building Materials, 89, 36–47. doi:10.1016/j.conbuildmat.2015.03.119.

Tang, C., Dong, R., Tang, Z., Long, G., Zeng, X., Xie, Y., Xie, Y., Cheng, G., Ma, G., Wang, H., & Wei, Y. (2023). Effects of shrinkage reducing admixture and internal curing agent on shrinkage and creep of high performance concrete. Journal of Building Engineering, 71, 106446. doi:10.1016/j.jobe.2023.106446.

Hong, S. H., Choi, J. S., Yuan, T. F., & Yoon, Y. S. (2023). A review on concrete creep characteristics and its evaluation on high-strength lightweight concrete. Journal of Materials Research and Technology, 22, 230–251. doi:10.1016/j.jmrt.2022.11.125.

Xu, Y., Liu, J., Liu, J., Zhang, Q., & Zhao, H. (2019). Creep at early ages of ultrahigh-strength concrete: Experiment and modelling. Magazine of Concrete Research, 71(16), 847–859. doi:10.1680/jmacr.17.00551.

Liu, Y., Li, Y., Jin, C., Li, H., & Mu, J. (2023). Research on irrecoverable creep of the hardened cement paste under different relative humidity. Journal of Building Engineering, 69(100), 106276. doi:10.1016/j.jobe.2023.106276.

ACI 209.2R-08. (2008). Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. American Concrete Institute (ACI), Michigan, United States.

Technical Data Sheet. (2023). KraTos Micro 12 mm. Kordsa, İzmit, Turkey. Available online: Micro 12 mm Polyamide Fiber (Findotek).pdf?ver=1656229786934 (accessed on June 2023).

RILEM Technical Committees 129. (2000). Part 8: Steady-state creep and creep recovery for service and accident conditions. Materials and Structures, 33(1), 6–13. doi:10.1007/bf02481690.

Bažant, Z. P., & Prasannan, S. (1988). Solidification theory for aging creep. Cement and Concrete Research, 18(6), 923–932. doi:10.1016/0008-8846(88)90028-2.

Bažant, Z. P., Hauggaard, A. B., Baweja, S., & Ulm, F. J. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of engineering mechanics, 123(11), 1188-1194. doi:10.1061/(ASCE)0733-9399(1997)123:11(1188).

Chen, Y., Liu, P., Sha, F., Yu, Z., He, S., Xu, W., & Lv, M. (2022). Effects of Type and Content of Fibers, Water-to-Cement Ratio, and Cementitious Materials on the Shrinkage and Creep of Ultra-High Performance Concrete. Polymers, 14(10), 1956. doi:10.3390/polym14101956.

Putri, P. M. (2021). Study of mortar creep with additional polymer materials for concrete repair. Journal of Physics: Conference Series, 1912(1), 012061. doi:10.1088/1742-6596/1912/1/012061.

Kristiawan, S. A. (2012). Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System. International Journal of Concrete Structures and Materials, 6(4), 221–230. doi:10.1007/s40069-012-0023-y.

Gilbert, R. I., & Ranzi, G. (2010). Time-dependent behaviour of concrete structures. CRC Press, London, United Kingdom. doi:10.1201/9781482288711.

Cheng, Z. Q., Zhao, R., Yuan, Y., Li, F., Castel, A., & Xu, T. (2020). Ageing coefficient for early age tensile creep of blended slag and low calcium fly ash geopolymer concrete. Construction and Building Materials, 262, 119855. doi:10.1016/j.conbuildmat.2020.119855.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-014


  • There are currently no refbacks.

Copyright (c) 2023 Stefanus Adi Kristiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.