Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading

Frank I. Aneke, Shadi Hanandeh, Denis Kalumba

Abstract


This study is focused on evaluating the factors affecting the performance of fiber-reinforced subgrade under cyclic loading. To achieve the objectives of this study, a series of dynamic triaxial (DT) tests was performed, and the following parameters, such as resilient modulus (MR), number of loading cycles (N), cyclic stress (CS), resilient strain (RS), and stress-strain hysteresis response of both the reinforced and unreinforced subgrades were evaluated. Subsequently, a series of scanning electron microscope (SEM) tests was conducted to track the fiber-soil interfacial bonding after the completion of DT test. The results indicated that N and CS triggered an appreciable decrease in MR with significantly high RS deformation for the unreinforced subgrade. However, reversed responses were noted upon the inclusion of sisal fiber due to fiber-soil adhesion and a high ductility response was portrayed by the reinforced subgrades. A reversed response was significant upon 0.25% and 0.5% fiber inclusion, beyond which the CS resistance slightly decreased. The stress-strain hysteresis loop was observed to increase as the axial strain increased proportionally with an increase in fiber contents, thus causing a significant increase in energy absorption in specimens. The SEM micrograph showed tightly knitted fiber-soil adhesion after the DT test. This study indicated that the reinforced subgrade sustained the CS, N, and improved energy absorption capacity, and MRupon fiber inclusion.

 

Doi: 10.28991/CEJ-2023-09-08-015

Full Text: PDF


Keywords


Resilient Modulus; Hysteresis Loop; Sisal Fibre; Cyclic Stress; Subgrade.

References


Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Resilient modulus and microstructure of unsaturated expansive subgrade stabilized with activated fly ash. International Journal of Geotechnical Engineering, 15(8), 915–938. doi:10.1080/19386362.2019.1656919.

Ikechukwu, A. F., & Chibuzor, O. K. (2022). Improving resilient modulus and cyclic crack restriction of preloaded expansive subgrade treated with nano-geopolymer binder. Arabian Journal of Geosciences, 15(15), 1340. doi:10.1007/s12517-022-10629-x.

Frank, A. I. (2015). Geotechnical properties of marginal highway backfill stabilized with activated fly ash. Master Thesis, University of Johannesburg, Johannesburg, South Africa.

TANG, L. S., WU, Y. P., ZHAO, Z. L., ZHAO, L., & CHEN, H. K. (2019). Dynamic Stress Response Characteristics within Soil and Influence of pH under Cyclic Loading. Journal of Yangtze River Scientific Research Institute, 36(12), 78. doi:10.11988/ckyyb.20180622. (In Chinese).

Ikechukwu, A. F., & Hassan, M. M. (2022). Assessing the Extent of Pavement Deterioration Caused by Subgrade Volumetric Movement Through Moisture Infiltration. International Journal of Pavement Research and Technology, 15(3), 676–692. doi:10.1007/s42947-021-00044-y.

Aneke, F. I. (2018). Behaviour Of Unsaturated Soils for Road Pavement Structure Under Cyclic Loading. Ph.D. Thesis, Central University of Technology, Free State, Bloemfontein, South Africa.

Ikechukwu, A. F., & Mostafa, M. M. H. (2020). Performance assessment of pavement structure using dynamics cone penetrometer (DCP). International Journal of Pavement Research and Technology, 13(5), 466–476. doi:10.1007/s42947-020-0249-z.

Ikechukwu, A. F., & Mostafa, M. M. H. (2021). Assessing the coupling effects of nanosized fly ash and precompression stress towards mitigating subgrade cracks mobilised by traffic loading. Nanotechnology for Environmental Engineering, 6(3), 63. doi:10.1007/s41204-021-00157-6.

Aneke, F. I., Mostafa, M. M. H., & El Kamash, W. (2021). Pre-compression and capillarity effect of treated expansive subgrade subjected to compressive and tensile loadings. Case Studies in Construction Materials, 15, e00575. doi:10.1016/j.cscm.2021.e00575.

Aneke, F. I., & Onyelowe, K. C. (2022). Applications of preloading pressure on expansive subgrade treated with nano-geopolymer binder for cyclic crack resistance. Nanotechnology for Environmental Engineering, 7(3), 593–607. doi:10.1007/s41204-022-00250-4.

Lu, Z., Fang, R., Yao, H., Hu, Z., & Liu, J. (2018). Evaluation and Analysis of the Traffic Load–Induced Settlement of Roads on Soft Subsoils with Low Embankments. International Journal of Geomechanics, 18(6), 41–56. doi:10.1061/(asce)gm.1943-5622.0001123.

Ikechukwu, A. F., Hassan, M. M., & Moubarak, A. (2021). Swelling stress effects on shear strength resistance of subgrades. International Journal of Geotechnical Engineering, 15(8), 939–949. doi:10.1080/19386362.2019.1656445.

Tang, L. S., Chen, H. K., Sun, Y. L., Zhang, Q. H., & Liao, H. R. (2018). Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests. Geomechanics and Engineering, 16(2), 113–124. doi:10.12989/gae.2018.16.2.113.

Guo, L., Wang, J., Cai, Y., Liu, H., Gao, Y., & Sun, H. (2013). Undrained deformation behavior of saturated soft clay under long-term cyclic loading. Soil Dynamics and Earthquake Engineering, 50(1), 28–37. doi:10.1016/j.soildyn.2013.01.029.

Cai, Y., Sun, Q., Guo, L., Juang, C. H., & Wang, J. (2015). Permanent deformation characteristics of saturated sand under cyclic loading. Canadian Geotechnical Journal, 52(6), 795–807. doi:10.1139/cgj-2014-0341.

Liu, X., Zhang, X., & Wang, X. (2021). Resilient modulus and cumulative plastic strain of frozen silty clay under dynamic aircraft loading. SN Applied Sciences, 3(10), 805. doi:10.1007/s42452-021-04792-1.

Qiu, C., Cao, D., Wang, Z., & Xu, G. (2016). Permanent deformation characteristics of saturated sand reinforced with horizontal-vertical inclusions under cyclic loading. Electronic Journal of Geotechnical Engineering, 21(21), 6545–6554.

Das, N., & Singh, S. K. (2019). Geotechnical behaviour of lateritic soil reinforced with brown waste and synthetic fibre. International Journal of Geotechnical Engineering, 13(3), 287–297. doi:10.1080/19386362.2017.1344002.

Moghal, A. A. B., Basha, B. M., & Ashfaq, M. (2019). Probabilistic Study on the Geotechnical Behavior of Fiber Reinforced Soil. Frontiers in Geotechnical Engineering. Developments in Geotechnical Engineering. Springer, Singapore. doi:10.1007/978-981-13-5871-5_17.

Ibraim, E., Camenen, J. F., Diambra, A., Kairelis, K., Visockaite, L., & Consoli, N. C. (2018). Energy efficiency of fibre reinforced soil formation at small element scale: Laboratory and numerical investigation. Geotextiles and Geomembranes, 46(4), 497–510. doi:10.1016/j.geotexmem.2018.04.008.

Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analysis. Journal of Terramechanics, 8(3), 109. doi:10.1016/0022-4898(72)90110-3.

AASHTO. (1962). The AASHTO road test, report 5-pavement research. Pavement Research. Accession No. 01417540, Highway Research Board, American Association of State Highway and Transportation Officials (AASHTO), Washington DC, United States.

Brown, S. F., & Hyde, A. F. L. (1975). Significance of cyclic confining stress in repeated-load triaxial testing of granular material. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(9), A102. doi:10.1016/0148-9062(76)90013-9.

Ling, J. M., Wang, W., & Wu, H. B. (2002). Residual deformation of saturated clay subgrade under vehicle load. Tongji Daxue Xuebao/Journal of Tongji University, 30(11), 1315–1320. doi:10.3321/j.issn:0253-374X.2002.11.007.

Mazari, M., Navarro, E., Abdallah, I., & Nazarian, S. (2014). Comparison of numerical and experimental responses of pavement systems using various resilient modulus models. Soils and Foundations, 54(1), 36–44. doi:10.1016/j.sandf.2013.12.004.

Yang, M., Men, Y. M., Cao, L., & Yuan, L. Q. (2016). Numerical analysis of stress in soil due to subway moving loads in ground fissure area. Chinese Journal of Underground Space and Engineering, 12 (06), 1545–1552.

Thevakumar, K., Indraratna, B., Ferreira, F. B., Carter, J., & Rujikiatkamjorn, C. (2021). The influence of cyclic loading on the response of soft subgrade soil in relation to heavy haul railways. Transportation Geotechnics, 29, 100571. doi:10.1016/j.trgeo.2021.100571.

ASTM D1140-17. (2017). Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/D1140-17.

ASTM D4318-17e1. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.

ASTM D3822/D3822M-14. (2020). Standard Test Method for Tensile Properties of Single Textile Fibres. ASTM International, Pennsylvania, United States. doi:10.1520/D3822_D3822M-14R20.

ASTM D698-12. (2007). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400 ft- lbf/ft3 (600 kN- m/ m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12R21.

Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. doi:10.3144/expresspolymlett.2008.50.

AASHTO T307-99. (2003). Standard method of test for determining the resilient modulus of soils and aggregate materials. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

Vucetic, M., & Mortezaie, A. (2015). Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains. Soil Dynamics and Earthquake Engineering, 70, 60–72. doi:10.1016/j.soildyn.2014.12.001.

Salour, F., Erlingsson, S., & Zapata, C. E. (2013). Modelling resilient modulus seasonal variation of Silty sand subgrade soils with matric suction control. Canadian Geotechnical Journal, 51(12), 1413–1422. doi:10.1139/cgj-2013-0484.

Yaghoubi, E., Yaghoubi, M., Guerrieri, M., & Sudarsanan, N. (2021). Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Construction and Building Materials, 302, 124384. doi:10.1016/j.conbuildmat.2021.124384.

Gaspard, K., Zhang, Z., Gautreau, G., Hanifa, K., Zapata, C. E., & Abufarsakh, M. (2019). Modeling the Resilient Modulus Variation of in Situ Soils due to Seasonal Moisture Content Variations. Advances in Civil Engineering, 2019. doi:10.1155/2019/1793601.

George, V., & Kumar, A. (2018). Studies on modulus of resilience using cyclic tri-axial test and correlations to PFWD, DCP, and CBR. International Journal of Pavement Engineering, 19(11), 976–985. doi:10.1080/10298436.2016.1230428.

Al Adili, A., Azzam, R., Spagnoli, G., & Schrader, J. (2012). Strength of soil reinforced with fiber materials (Papyrus). Soil Mechanics and Foundation Engineering, 48(6), 241–247. doi:10.1007/s11204-012-9154-z.

Głuchowski, A., & Sas, W. (2020). Long-term cyclic loading impact on the creep deformation mechanism in cohesive materials. Materials, 13(17), 3907. doi:10.3390/ma13173907.

An, R., Kong, L., Shi, W., & Zhang, X. (2022). Stiffness decay characteristics and disturbance effect evaluation of structured clay based on in-situ tests. Soils and Foundations, 62(5), 101184. doi:10.1016/j.sandf.2022.101184.

Kennedy, S., Clarke, S., & Shepley, P. (2022). The Effect of Stress Level on the Resilient Modulus of Non-Engineered Mudrock Backfill Materials. CivilEng, 3(3), 630–642. doi:10.3390/civileng3030037.

Xie, L., Zhao, Z., & Lei, Y. (2019). Accumulated Plastic Strain of Silty Clay under Subway Moving Loads. Journal of Shenyang Jianzhu University (Natural Science), 35(1), 91–100. doi:10.11717/j.issn:2095-1922.2019.01.11.

Sandjak, K., & Tiliouine, B. (2012). Experimental evaluation of non-linear resilient deformations of some algerian aggregates under cyclic loading. Arabian Journal for Science and Engineering, 39(3), 1507–1516. doi:10.1007/s13369-013-0737-4.

Tang, L., Zhao, Z., Chen, H., Wu, Y., & Zeng, Y. (2019). Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests. Journal of Central South University, 26(3), 728–742. doi:10.1007/s11771-019-4043-5.

Bian, X., Jiang, J., Jin, W., Sun, D., Li, W., & Li, X. (2016). Cyclic and Postcyclic Triaxial Testing of Ballast and Subballast. Journal of Materials in Civil Engineering, 28(7), 4016032. doi:10.1061/(asce)mt.1943-5533.0001523.

Han, Z., Vanapalli, S. K., Ren, J. ping, & Zou, W. lie. (2018). Characterizing cyclic and static moduli and strength of compacted pavement subgrade soils considering moisture variation. Soils and Foundations, 58(5), 1187–1199. doi:10.1016/j.sandf.2018.06.003.

Estabragh, A. R., Moghadas, M., Moradi, M., & Javadi, A. A. (2017). Consolidation behavior of an unsaturated silty soil during drying and wetting. Soils and Foundations, 57(2), 277–287. doi:10.1016/j.sandf.2017.03.005.

Kumar, S. S., Krishna, A. M., & Dey, A. (2017). Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dynamics and Earthquake Engineering, 99, 157–167. doi:10.1016/j.soildyn.2017.05.016.

Soliman, H., & Shalaby, A. (2015). Permanent deformation behavior of unbound granular base materials with varying moisture and fines content. Transportation Geotechnics, 4, 1–12. doi:10.1016/j.trgeo.2015.06.001.

Madhavi Latha., G., & Nandhi Varman., A. M. (2016). Static and cyclic load response of reinforced sand through large triaxial tests. Japanese Geotechnical Society Special Publication, 2(68), 2342–2346. doi:10.3208/jgssp.igs-39.

Ying, M., Liu, F., Wang, J., Wang, C., & Li, M. (2021). Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil–geogrid interface. Transportation Geotechnics, 27, 100504. doi:10.1016/j.trgeo.2020.100504.

Olgun, M. (2013). Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil. Geosynthetics International, 20(4), 263–275. doi:10.1680/gein.13.00016.

Gao, L., Zhou, Q., Yu, X., Wu, K., & Mahfouz, A. H. (2017). Experimental study on the unconfined compressive strength of carbon fiber reinforced clay soil. Marine Georesources & Geotechnology, 35(1), 143–148. doi:10.1080/1064119X.2015.1102184.

Tang, C. S., Li, J., Wang, D. Y., & Shi, B. (2016). Investigation on the interfacial mechanical behavior of wave-shaped fiber reinforced soil by pullout test. Geotextiles and Geomembranes, 44(6), 872–883. doi:10.1016/j.geotexmem.2016.05.001.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Frank Aneke, Shadi Hanandeh, Denis Kalumba

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message