Optimal Bracing Type of Reinforced Concrete Buildings with Soil-Structure Interaction Taken into Consideration
Abstract
Doi: 10.28991/CEJ-2023-09-06-06
Full Text: PDF
Keywords
References
Nesrine, G., Djarir, Y., Khelifa, A., & Tayeb, B. (2021). Performance assessment of interaction soil pile structure using the fragility methodology. Civil Engineering Journal (Iran), 7(2), 376–398. doi:10.28991/cej-2021-03091660.
Ambavaram, V. S., Muddarangappagari, A., Mekala, A., & Chenna, R. (2021). Dynamic performance of multi-storey buildings under surface blast: A case study. Innovative Infrastructure Solutions, 6(4), 223. doi:10.1007/s41062-021-00585-y.
Sheikh, E., Mousavi, S. R., & Afshoon, I. (2022). Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. Journal of Cleaner Production, 368, 133005. doi:10.1016/j.jclepro.2022.133005.
Bohara, B. K., Ganaie, K. H., & Saha, P. (2022). Effect of position of steel bracing in L-shape reinforced concrete buildings under lateral loading. Research on Engineering Structures and Materials, 8(1), 155–177. doi:10.17515/resm2021.295st0519.
Nguyen, V. T., & Nguyen, X. D. (2021). Effects of ground motion spectral shapes on the design of seismic base isolation for multi-story building according to Eurocode 8. Innovative Infrastructure Solutions, 6(3), 132. doi:10.1007/s41062-021-00507-y.
Afzal, M., Liu, Y., Cheng, J. C. P., & Gan, V. J. L. (2020). Reinforced concrete structural design optimization: A critical review. Journal of Cleaner Production, 260, 120623. doi:10.1016/j.jclepro.2020.120623.
Russo, G., Marone, G., & Di Girolamo, L. (2021). Hybrid energy piles as a smart and sustainable foundation. Journal of Human, Earth, and Future, 2(3), 306-322. doi:10.28991/HEF-2021-02-03-010.
Wong, H. L., Trifunac, M. D., & Lo, K. K. (1976). Influence of Canyon on Soil-Structure Interaction. Journal of the Engineering Mechanics Division, 102(4), 671–684. doi:10.1061/jmcea3.0002150.
Wong, H. L., & Luco, J. E. (1976). Dynamic response of rigid foundations of arbitrary shape. Earthquake Engineering & Structural Dynamics, 4(6), 579–587. doi:10.1002/eqe.4290040606.
Mohammadioun, B., & Pecker, A. (1984). Low‐frequency transfer of seismic energy by superficial soil deposits and soft rocks. Earthquake Engineering & Structural Dynamics, 12(4), 537–564. doi:10.1002/eqe.4290120409.
Wolf, J. P., & Obernhuber, P. (1985). Non‐linear soil‐structure‐interaction analysis using dynamic stiffness or flexibility of soil in the time domain. Earthquake Engineering & Structural Dynamics, 13(2), 195–212. doi:10.1002/eqe.4290130205.
Gueguen, P., Bard, P. Y., & Oliveira, C. S. (2000). Experimental and Numerical analysis of Soil Motions caused by free vibrations of a building model. Bulletin of the Seismological Society of America, 90(6), 1464–1479. doi:10.1785/0119990072.
Bard, P. Y., Gueguen, P., & Wirgin, A. (1996). A note on the seismic wavefield radiated from large building structures into soft soils. 11th World Conference on Earthquake Engineering, 23-28 June, 1996, Acapulco, Mexico.
Jennings, P. C. (1970). Distant motions from a building vibration test. Bulletin of the Seismological Society of America, 60(6), 2037–2043. doi:10.1785/bssa0600062037.
Sieffert, J. G., & Cevaer, F. (1992). Handbook of impedance functions. Surface foundations, Ouest Éditions, Rennes, France.
Wirgin, A., & Bard, P. Y. (1996). Effects of buildings on the duration and amplitude of ground motion in Mexico City. Bulletin of the Seismological Society of America, 86(3), 914–920.
Davidovici, V. (1999). Construction in seismic zones: regulatory approach, structural analysis models, diagnosis of existing buildings, example of calculations. Le moniteur, Antony, France. (In French).
Allotey, N., & El Naggar, M. H. (2003). Analytical moment–rotation curves for rigid foundations based on a Winkler model. Soil Dynamics and Earthquake Engineering, 23(5), 367-381. doi:10.1016/S0267-7261(03)00034-4.
Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2019). The Liquefaction Potential of Sandy Silt Layers Using the Correlation Between Penetrometer Test and SPT Test. Dynamic Soil-Structure Interaction for Sustainable Infrastructures. GeoMEast 2018, Sustainable Civil Infrastructures. Springer, Cham, Switzerland. doi:10.1007/978-3-030-01920-4_2.
Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.
Liam Finn, W. D. (2010). Aspects of soil structure interaction. Soil-Foundation-Structure Interaction, CRC Press, London, United Kingdom. doi:10.1201/b10568-9.
BS EN 1998. (1998). Eurocode 8: Design of structures for earthquake resistance. British Standards Institution, London, United Kingdom. doi:10.3403/BSEN1998.
Driscoll, R., & Simpson, B. (2001). EN1997 Eurocode 7: Geotechnical design. Proceedings of the Institution of Civil Engineers - Civil Engineering, 144(6), 49–54. doi:10.1680/cien.2001.144.6.49.
Guéguen, P., Bard, P. Y., & Chávez-García, F. J. (2002). Site-city seismic interaction in Mexico City - Like environments: An analytical study. Bulletin of the Seismological Society of America, 92(2), 794–811. doi:10.1785/0120000306.
Ergunes, O., & Aksu Özkul, T. (2022). Seismic assessment of tall buildings designed according to the Turkish Building Earthquake Code. Civil Engineering Journal (Iran), 8(3), 567-579. doi:10.28991/cej-2022-08-03-011.
Cherkaoui, T. E., & El Hassani, A. (2012). Seismicity and Seismic hazard in Morocco. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 34, 45-55.
Cherkaoui, T.-E., & Asebriy, L. (2003). The seismic risk in the North of Morocco. Trav. Inst. Sci. Rabat, Sér. Géol. & Géogr. Phys., N°, 21, 225–232. (In French).
Razzouk, Y., Ahatri, M., & Baba, K. (2022). the Impact of the Seismic Area on the Bracing Type Choice of Reinforced Concrete Buildings. Journal of Southwest Jiaotong University, 57(6), 899–912. doi:10.35741/issn.0258-2724.57.6.77.
R.P.S. 2000. (2011). Seismic Building Regulations. Ministry of Territorial Planning, Urban Planning, Housing and the Environment; State Secretariat for Housing, Rabat, Morocco,
Razzouk, Y., Baba, K., & Ahatri, M. (n.d.). The influence of spectral responses on the structures heights: case of the Rhiss river earthquake in morocco (6.3 mw)-seismogenic source 4 (RIF oriental-al hoceima-alboran). ARPN Journal of Engineering and Applied Sciences, 17(6), 645–651.
Ahatri, M., Baba, K., Touijrate, S., & Bahi, L. (2018). Characteristics of Spectral Responses for a Ground Motion from Mediterranean Earthquake – Zeghanghane Station (6.3Mw) in Morocco, and it’s Influence on the Structures. MATEC Web of Conferences, 149, 02041. doi:10.1051/matecconf/201814902041.
Ahatri, M., Baba, K., Touijrate, S., & Bahi, L. (2019). The Influence of Spectral Responses on the Structures Heights. In H. Rodrigues & A. Elnashai (Eds.), Sustainable Civil Infrastructures, 65–76. Springer International Publishing. doi:10.1007/978-3-030-01932-7_7.
Kutanis, M., Ulutaş, H., & Işik, E. (2018). PSHA of Van province for performance assessment using spectrally matched strong ground motion records. Journal of Earth System Science, 127(7), 1–14. doi:10.1007/s12040-018-1004-6.
Touijrate, S. Baba, K. Ahatri, M. & Bahi, L. (2018). The liquefaction potential of sandy silt layers using CPT tests: Case study from the Casablanca—tangier high-speed rail line (LGV) in Morocco. International Journal of Civil Engineering and Technology, 9(10), 1644–1656.
Kyei, C., & Braimah, A. (2017). Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading. Engineering Structures, 142, 148-164. doi:10.1016/j.engstruct.2017.03.044.
Seghir, A. (2010). Contribution to the numerical modeling of the seismic response of structures with soil-structure interaction and fluid-structure interaction: application to the study of concrete gravity dams. Ph.D. Thesis, Université Abderrahmane Mira-Bejaïa, Bejaïa, Algeria. (In French).
Zhang, W., Seylabi, E. E., & Taciroglu, E. (2019). An ABAQUS toolbox for soil-structure interaction analysis. Computers and Geotechnics, 114, 103143. doi:10.1016/j.compgeo.2019.103143.
Singh, V., & Sangle, K. (2022). Analysis of vertically oriented coupled shear wall interconnected with coupling beams. HighTech and Innovation Journal, 3(2), 230-242. doi:10.28991/HIJ-2022-03-02-010.
da Silva, G. S., Kosteski, L. E., & Iturrioz, I. (2020). Analysis of the failure process by using the Lattice Discrete Element Method in the Abaqus environment. Theoretical and Applied Fracture Mechanics, 107, 102563. doi:10.1016/j.tafmec.2020.102563.
Cruz, F., Roehl, D., & Vargas, E. do A. (2019). An XFEM implementation in Abaqus to model intersections between fractures in porous rocks. Computers and Geotechnics, 112, 135–146. doi:10.1016/j.compgeo.2019.04.014.
Zhang, X., & Far, H. (2022). Effects of dynamic soil-structure interaction on seismic behaviour of high-rise buildings. Bulletin of Earthquake Engineering, 20(7), 3443–3467. doi:10.1007/s10518-021-01176-z.
Awchat, G. D., Monde, A., Sirsikar, R., Dingane, R., & Dhanjode, G. (2022). Seismic Pounding Response of Neighboring Structure using Various Codes with Soil-Structure Interaction effects: Focus on Separation Gap. Civil Engineering Journal (Iran), 8(2), 308–318. doi:10.28991/CEJ-2022-08-02-09.
Laissy, M. Y. (2022). Effect of Different Types of Bracing System and Shear Wall on the Seismic Response of RC Buildings Resting on Sloped Terrain. Civil Engineering Journal (Iran), 8(9), 1958–1976. doi:10.28991/CEJ-2022-08-09-014.
Rahimi, A., & Maheri, M. R. (2020). The effects of steel X-brace retrofitting of RC frames on the seismic performance of frames and their elements. Engineering Structures, 206, 110149. doi:10.1016/j.engstruct.2019.110149.
Anirudh Raajan, V., Balaji, G. C., & Vasavi, V. (2021). Response spectrum analysis of a G+4 building with mass irregularity on a sloped surface. IOP Conference Series: Materials Science and Engineering, 1070(1), 012043. doi:10.1088/1757-899x/1070/1/012043.
Chore, H. S., & Sawant, V. A. (2016). Soil-Structure Interaction of Space Frame Supported on Pile Foundation Embedded in Cohesionless Soil. Indian Geotechnical Journal, 46(4), 415–424. doi:10.1007/s40098-016-0188-4.
DOI: 10.28991/CEJ-2023-09-06-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yassine Razzouk
This work is licensed under a Creative Commons Attribution 4.0 International License.