Optimal Bracing Type of Reinforced Concrete Buildings with Soil-Structure Interaction Taken into Consideration

Yassine Razzouk, Mohamed Ahatri, Khadija Baba, Ahlam El Majid

Abstract


This study aims to investigate the impact of soil-structure interaction (SSI) on the seismic behavior of reinforced concrete buildings. An advanced numerical model for SSI was developed and verified using ABAQUS software. The seismic response of a 12-story building on four types of soil (rock, dense soil, stiff soil, and soft soil) was examined using a Normalized Response Spectra based on the Moroccan paraseismic regulation RPS 2011. The global lateral displacement, inter-story drift, and period were compared for two types of bracing (column and shear wall). The results show that SSI has a significant impact on the seismic behavior of buildings, and the seismic responses of soil-structure systems with column and shear wall bracing are quite different. The research contributions of this paper include developing an advanced numerical model for SSI, examining the impact of SSI on the choice of bracing for reinforced concrete buildings, and providing guidance on the most reliable bracing method for structures of various heights and soil types. The study's findings have important implications for seismic design and can help improve the safety and reliability of buildings in earthquake-prone regions. The study also highlights the importance of considering SSI in seismic design and the need for guidelines that describe the bracing systems to be used based on the structure's height and type of soil.

 

Doi: 10.28991/CEJ-2023-09-06-06

Full Text: PDF


Keywords


Bracing System; Reinforced Concrete; Soil-Structure Interaction; Seismic Response; ABAQUS.

References


Nesrine, G., Djarir, Y., Khelifa, A., & Tayeb, B. (2021). Performance assessment of interaction soil pile structure using the fragility methodology. Civil Engineering Journal (Iran), 7(2), 376–398. doi:10.28991/cej-2021-03091660.

Ambavaram, V. S., Muddarangappagari, A., Mekala, A., & Chenna, R. (2021). Dynamic performance of multi-storey buildings under surface blast: A case study. Innovative Infrastructure Solutions, 6(4), 223. doi:10.1007/s41062-021-00585-y.

Sheikh, E., Mousavi, S. R., & Afshoon, I. (2022). Producing green Roller Compacted Concrete (RCC) using fine copper slag aggregates. Journal of Cleaner Production, 368, 133005. doi:10.1016/j.jclepro.2022.133005.

Bohara, B. K., Ganaie, K. H., & Saha, P. (2022). Effect of position of steel bracing in L-shape reinforced concrete buildings under lateral loading. Research on Engineering Structures and Materials, 8(1), 155–177. doi:10.17515/resm2021.295st0519.

Nguyen, V. T., & Nguyen, X. D. (2021). Effects of ground motion spectral shapes on the design of seismic base isolation for multi-story building according to Eurocode 8. Innovative Infrastructure Solutions, 6(3), 132. doi:10.1007/s41062-021-00507-y.

Afzal, M., Liu, Y., Cheng, J. C. P., & Gan, V. J. L. (2020). Reinforced concrete structural design optimization: A critical review. Journal of Cleaner Production, 260, 120623. doi:10.1016/j.jclepro.2020.120623.

Russo, G., Marone, G., & Di Girolamo, L. (2021). Hybrid energy piles as a smart and sustainable foundation. Journal of Human, Earth, and Future, 2(3), 306-322. doi:10.28991/HEF-2021-02-03-010.

Wong, H. L., Trifunac, M. D., & Lo, K. K. (1976). Influence of Canyon on Soil-Structure Interaction. Journal of the Engineering Mechanics Division, 102(4), 671–684. doi:10.1061/jmcea3.0002150.

Wong, H. L., & Luco, J. E. (1976). Dynamic response of rigid foundations of arbitrary shape. Earthquake Engineering & Structural Dynamics, 4(6), 579–587. doi:10.1002/eqe.4290040606.

Mohammadioun, B., & Pecker, A. (1984). Low‐frequency transfer of seismic energy by superficial soil deposits and soft rocks. Earthquake Engineering & Structural Dynamics, 12(4), 537–564. doi:10.1002/eqe.4290120409.

Wolf, J. P., & Obernhuber, P. (1985). Non‐linear soil‐structure‐interaction analysis using dynamic stiffness or flexibility of soil in the time domain. Earthquake Engineering & Structural Dynamics, 13(2), 195–212. doi:10.1002/eqe.4290130205.

Gueguen, P., Bard, P. Y., & Oliveira, C. S. (2000). Experimental and Numerical analysis of Soil Motions caused by free vibrations of a building model. Bulletin of the Seismological Society of America, 90(6), 1464–1479. doi:10.1785/0119990072.

Bard, P. Y., Gueguen, P., & Wirgin, A. (1996). A note on the seismic wavefield radiated from large building structures into soft soils. 11th World Conference on Earthquake Engineering, 23-28 June, 1996, Acapulco, Mexico.

Jennings, P. C. (1970). Distant motions from a building vibration test. Bulletin of the Seismological Society of America, 60(6), 2037–2043. doi:10.1785/bssa0600062037.

Sieffert, J. G., & Cevaer, F. (1992). Handbook of impedance functions. Surface foundations, Ouest Éditions, Rennes, France.

Wirgin, A., & Bard, P. Y. (1996). Effects of buildings on the duration and amplitude of ground motion in Mexico City. Bulletin of the Seismological Society of America, 86(3), 914–920.

Davidovici, V. (1999). Construction in seismic zones: regulatory approach, structural analysis models, diagnosis of existing buildings, example of calculations. Le moniteur, Antony, France. (In French).

Allotey, N., & El Naggar, M. H. (2003). Analytical moment–rotation curves for rigid foundations based on a Winkler model. Soil Dynamics and Earthquake Engineering, 23(5), 367-381. doi:10.1016/S0267-7261(03)00034-4.

Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2019). The Liquefaction Potential of Sandy Silt Layers Using the Correlation Between Penetrometer Test and SPT Test. Dynamic Soil-Structure Interaction for Sustainable Infrastructures. GeoMEast 2018, Sustainable Civil Infrastructures. Springer, Cham, Switzerland. doi:10.1007/978-3-030-01920-4_2.

Touijrate, S., Baba, K., Ahatri, M., & Bahi, L. (2018). Validation and Verification of Semi-Empirical Methods for Evaluating Liquefaction Using Finite Element Method. MATEC Web of Conferences, 149, 02028. doi:10.1051/matecconf/201814902028.

Liam Finn, W. D. (2010). Aspects of soil structure interaction. Soil-Foundation-Structure Interaction, CRC Press, London, United Kingdom. doi:10.1201/b10568-9.

BS EN 1998. (1998). Eurocode 8: Design of structures for earthquake resistance. British Standards Institution, London, United Kingdom. doi:10.3403/BSEN1998.

Driscoll, R., & Simpson, B. (2001). EN1997 Eurocode 7: Geotechnical design. Proceedings of the Institution of Civil Engineers - Civil Engineering, 144(6), 49–54. doi:10.1680/cien.2001.144.6.49.

Guéguen, P., Bard, P. Y., & Chávez-García, F. J. (2002). Site-city seismic interaction in Mexico City - Like environments: An analytical study. Bulletin of the Seismological Society of America, 92(2), 794–811. doi:10.1785/0120000306.

Ergunes, O., & Aksu Özkul, T. (2022). Seismic assessment of tall buildings designed according to the Turkish Building Earthquake Code. Civil Engineering Journal (Iran), 8(3), 567-579. doi:10.28991/cej-2022-08-03-011.

Cherkaoui, T. E., & El Hassani, A. (2012). Seismicity and Seismic hazard in Morocco. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 34, 45-55.

Cherkaoui, T.-E., & Asebriy, L. (2003). The seismic risk in the North of Morocco. Trav. Inst. Sci. Rabat, Sér. Géol. & Géogr. Phys., N°, 21, 225–232. (In French).

Razzouk, Y., Ahatri, M., & Baba, K. (2022). the Impact of the Seismic Area on the Bracing Type Choice of Reinforced Concrete Buildings. Journal of Southwest Jiaotong University, 57(6), 899–912. doi:10.35741/issn.0258-2724.57.6.77.

R.P.S. 2000. (2011). Seismic Building Regulations. Ministry of Territorial Planning, Urban Planning, Housing and the Environment; State Secretariat for Housing, Rabat, Morocco,

Razzouk, Y., Baba, K., & Ahatri, M. (n.d.). The influence of spectral responses on the structures heights: case of the Rhiss river earthquake in morocco (6.3 mw)-seismogenic source 4 (RIF oriental-al hoceima-alboran). ARPN Journal of Engineering and Applied Sciences, 17(6), 645–651.

Ahatri, M., Baba, K., Touijrate, S., & Bahi, L. (2018). Characteristics of Spectral Responses for a Ground Motion from Mediterranean Earthquake – Zeghanghane Station (6.3Mw) in Morocco, and it’s Influence on the Structures. MATEC Web of Conferences, 149, 02041. doi:10.1051/matecconf/201814902041.

Ahatri, M., Baba, K., Touijrate, S., & Bahi, L. (2019). The Influence of Spectral Responses on the Structures Heights. In H. Rodrigues & A. Elnashai (Eds.), Sustainable Civil Infrastructures, 65–76. Springer International Publishing. doi:10.1007/978-3-030-01932-7_7.

Kutanis, M., Ulutaş, H., & Işik, E. (2018). PSHA of Van province for performance assessment using spectrally matched strong ground motion records. Journal of Earth System Science, 127(7), 1–14. doi:10.1007/s12040-018-1004-6.

Touijrate, S. Baba, K. Ahatri, M. & Bahi, L. (2018). The liquefaction potential of sandy silt layers using CPT tests: Case study from the Casablanca—tangier high-speed rail line (LGV) in Morocco. International Journal of Civil Engineering and Technology, 9(10), 1644–1656.

Kyei, C., & Braimah, A. (2017). Effects of transverse reinforcement spacing on the response of reinforced concrete columns subjected to blast loading. Engineering Structures, 142, 148-164. doi:10.1016/j.engstruct.2017.03.044.

Seghir, A. (2010). Contribution to the numerical modeling of the seismic response of structures with soil-structure interaction and fluid-structure interaction: application to the study of concrete gravity dams. Ph.D. Thesis, Université Abderrahmane Mira-Bejaïa, Bejaïa, Algeria. (In French).

Zhang, W., Seylabi, E. E., & Taciroglu, E. (2019). An ABAQUS toolbox for soil-structure interaction analysis. Computers and Geotechnics, 114, 103143. doi:10.1016/j.compgeo.2019.103143.

Singh, V., & Sangle, K. (2022). Analysis of vertically oriented coupled shear wall interconnected with coupling beams. HighTech and Innovation Journal, 3(2), 230-242. doi:10.28991/HIJ-2022-03-02-010.

da Silva, G. S., Kosteski, L. E., & Iturrioz, I. (2020). Analysis of the failure process by using the Lattice Discrete Element Method in the Abaqus environment. Theoretical and Applied Fracture Mechanics, 107, 102563. doi:10.1016/j.tafmec.2020.102563.

Cruz, F., Roehl, D., & Vargas, E. do A. (2019). An XFEM implementation in Abaqus to model intersections between fractures in porous rocks. Computers and Geotechnics, 112, 135–146. doi:10.1016/j.compgeo.2019.04.014.

Zhang, X., & Far, H. (2022). Effects of dynamic soil-structure interaction on seismic behaviour of high-rise buildings. Bulletin of Earthquake Engineering, 20(7), 3443–3467. doi:10.1007/s10518-021-01176-z.

Awchat, G. D., Monde, A., Sirsikar, R., Dingane, R., & Dhanjode, G. (2022). Seismic Pounding Response of Neighboring Structure using Various Codes with Soil-Structure Interaction effects: Focus on Separation Gap. Civil Engineering Journal (Iran), 8(2), 308–318. doi:10.28991/CEJ-2022-08-02-09.

Laissy, M. Y. (2022). Effect of Different Types of Bracing System and Shear Wall on the Seismic Response of RC Buildings Resting on Sloped Terrain. Civil Engineering Journal (Iran), 8(9), 1958–1976. doi:10.28991/CEJ-2022-08-09-014.

Rahimi, A., & Maheri, M. R. (2020). The effects of steel X-brace retrofitting of RC frames on the seismic performance of frames and their elements. Engineering Structures, 206, 110149. doi:10.1016/j.engstruct.2019.110149.

Anirudh Raajan, V., Balaji, G. C., & Vasavi, V. (2021). Response spectrum analysis of a G+4 building with mass irregularity on a sloped surface. IOP Conference Series: Materials Science and Engineering, 1070(1), 012043. doi:10.1088/1757-899x/1070/1/012043.

Chore, H. S., & Sawant, V. A. (2016). Soil-Structure Interaction of Space Frame Supported on Pile Foundation Embedded in Cohesionless Soil. Indian Geotechnical Journal, 46(4), 415–424. doi:10.1007/s40098-016-0188-4.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-06-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Yassine Razzouk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message