Experimental and Numerical Parametric Studies on Inclined Skirted Foundation Resting on Sand

Tamer Al-Shyoukhi, Mahmoud Elmeligy, Ayman I. Altahrany


Skirted foundation behavior is enhanced due to the increase in skirt angle. The bearing capacity of the inclined skirted foundations resting on sandy soil is influenced by the soil parameters and skirting systems. Finite element analyses were carried out using Plaxis-3D software to find out the influence of the relative density, the internal friction angle of the supported soil, and the additional skirts on the bearing capacity of the inclined skirted foundations. The experimental work on a small physical scale was also carried out to support the numerical findings, which give an acceptable agreement. The findings revealed that the increase in relative density resulted in a significant increase in the bearing capacity of the inclined skirted foundation. In the same way, as the internal friction angle increases, the bearing capacity is affected by this increase, which improves the bearing capacity value. The effect of the additional skirts on the bearing capacity is observed to be neglected, and, in some cases, it causes a negative effect. The findings of this study contribute to a greater comprehension of the behavior of inclined skirted foundations and can assist in the future design of more efficient and effective foundation systems.


Doi: 10.28991/CEJ-2023-09-07-017

Full Text: PDF


Inclined-Skirted Foundation; Bearing Capacity; Sand; Internal Friction Angle; Relative Density; Additional Skirt.


Al-Aghbari, M. Y., & Mohamedzein, Y. E. A. (2004). Bearing capacity of strip foundations with structural skirts. Geotechnical and Geological Engineering, 22(1), 43–57. doi:10.1023/B:GEGE.0000013997.79473.e0.

Al-Aghbari, M. Y., & Dutta, R. K. (2008). Performance of square footing with structural skirt resting on sand. Geomechanics and Geoengineering, 3(4), 271–277. doi:10.1080/17486020802509393.

Eid, H. T., Alansari, O. A., Odeh, A. M., Nasr, M. N., & Sadek, H. A. (2009). Comparative study on the behavior of square foundations resting on confined sand. Canadian Geotechnical Journal, 46(4), 438–453. doi:10.1139/T08-134.

El Wakil, A. Z. (2013). Bearing capacity of Skirt circular footing on sand. Alexandria Engineering Journal, 52(3), 359–364. doi:10.1016/j.aej.2013.01.007.

Khatri, V. N., Debbarma, S. P., Dutta, R. K., & Mohanty, B. (2017). Pressure-settlement behavior of square and rectangular skirted footings resting on sand. Geomechanics and Engineering, 12(4), 689–705. doi:10.12989/gae.2017.12.4.689.

Thakur, A., & Dutta, R. K. (2020). Experimental and numerical studies of skirted hexagonal footings on three sands. SN Applied Sciences, 2(3), 487. doi:10.1007/s42452-020-2239-9.

ShabanaSalih, K., & Joseph, M. (2017). Behavior of Single Skirted Footing Model Resting on Non-Uniform Soil. Electronic Journal of Geotechnical Engineering, 22(1998), 4109–4126.

Vijay, A., Akella, V., & Raghu Prasad, B. K. (2020). Experimental Studies and Numerical Validation on Bearing Capacity of Skirted Footings on c-Φ Soils. Advances in Structures, Systems and Materials. Lecture Notes on Multidisciplinary Industrial Engineering, Springer, Singapore. doi:10.1007/978-981-15-3254-2_9.

Lepcha, O. N., Deb, P., & Pal, S. K. (2023). Parametric Studies on Skirted Foundation Resting on Sandy Soil. Soil Behavior and Characterization of Geomaterials. IGC 2021, Lecture Notes in Civil Engineering, 296, Springer, Singapore. doi:10.1007/978-981-19-6513-5_26.

Al-Shyoukhi, T. (2023). Study the behavior of the Different Patterns of the Skirted Foundations. MSc. Thesis, Mansoura University, Egypt.

Brinkgreve, R. & Broere, W. (2007). Plaxis 3D Foundation Version 2. Delft University of Technology & PLAXIS, The Netherlands.

Magdy, K., Altahrany, A., & Elmeligy, M. (2022). Comparative Study of the Behaviors of Skirted Foundations of Different Shapes. International Journal of GEOMATE, 23(96), 104–111. doi:10.21660/2022.96.3328.

Magdy, K. (2022). Comparative Study of the Behavior of Skirted Foundations of Different Shapes. Master Thesis, Mansoura University, Mansoura, Egypt.

Eid, H. T. (2013). Bearing Capacity and Settlement of Skirted Shallow Foundations on Sand. International Journal of Geomechanics, 13(5), 645–652. doi:10.1061/(asce)gm.1943-5622.0000237.

Schanz, T., Vermeer, P. A., & Bonnier, P. G. (2019). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics, 281–296, Routledge, Milton Park, United Kingdom. doi:10.1201/9781315138206-27.

Obrzud, R. & Truty, A. (2020). The Hardening Soil Model - A Practical Guidebook. Z. Soil. PC 100701 Report, Préverenges, Switzerland.

Lengkeek, H. J. (2003). Estimation of sand stiffness parameters from cone resistance. PLAXIS Bulletin, (13), 15-19.

Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 in computational geotechnics. Ten Years of PLAXIS International. Proceedings of the international symposium, Amsterdam, March 1999. (pp. 281–296). Springer. doi:10.1201/9781315138206-27.

Hong, Y., Wang, L., Yang, B., & Zhang, J. (2019). Stress-dilatancy behaviour of bubbled fine-grained sediments. Engineering Geology, 260, 105196. doi:10.1016/j.enggeo.2019.105196.

Maleki, M., & Mir Mohammad Hosseini, S. M. (2022). Assessment of the Pseudo-static seismic behavior in the soil nail walls using numerical analysis. Innovative Infrastructure Solutions, 7(4), 262. doi:10.1007/s41062-022-00861-5.

Maleki, M., & Imani, M. (2022). Active lateral pressure to rigid retaining walls in the presence of an adjacent rock mass. Arabian Journal of Geosciences, 15(2), 152. doi:10.1007/s12517-022-09454-z.

Maleki, M., Khezri, A., Nosrati, M., & Hosseini, S. M. M. M. (2023). Seismic amplification factor and dynamic response of soil-nailed walls. Modeling Earth Systems and Environment, 9(1), 1181–1198. doi:10.1007/s40808-022-01543-y.

Maleki, M., & Nabizadeh, A. (2021). Seismic performance of deep excavation restrained by guardian truss structures system using quasi-static approach. SN Applied Sciences, 3(4), 417. doi:10.1007/s42452-021-04415-9.

Das, B. M. (2011). Chapter 5 - Shallow Foundations: Ultimate Bearing Capacity. Principles of Foundation Engineering (7th Ed.), Cengage Learning, Boston, United States.

NSI. (2022). Certificate of Calibration: National Institute of Standards. Ministry of High Education and Scientific Research. Cairo, Egypt.

Tripathy, S. (2013). Load carrying capacity of skirted foundation on sand. Master Thesis. National Institute of Technology, Rourkela, Odisha, India.

Juneja, G., & Sharma, R. K. (2022). Numerical Analysis of Square and Circular Skirted Footings Placed on Sand using PLAXIS 3D Software. Journal of Mining and Environment, 13(4), 1049–1066. doi:10.22044/jme.2022.12458.2261.

Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, Hoboken, United States.

Yun, G., & Bransby, M. F. (2007). The undrained vertical bearing capacity of skirted foundations. Soils and Foundations, 47(3), 493–505. doi:10.3208/sandf.47.493.

Vesić, A. S. (1973). Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45–73. doi:10.1061/jsfeaq.0001846.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-017


Copyright (c) 2023 Tamer Houssien AL-Shyoukhi, Mahmoud Elmeligy, Ayman Altahrany

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.