The Hydrodynamic Model Application for Future Coastal Zone Development in Remote Area

Surya Hermawan, David Bangguna, Edwin Mihardja, Jason Fernaldi, Jescey Edlin Prajogo

Abstract


Indonesia is an archipelago country with a wealth of marine resources. However, local communities have not optimally utilized the use of natural resources, including those in the coastal zone of Central Sulawesi, Indonesia. This research goal is to identify the potential coastal areas for future development in the coastal zones, such as grouper floating net cage (FNC) culture, seaweed cultivation, and tourism areas. Thus, it is intended to develop the methodology of the hydrodynamic models for decision support systems (DSS) within the analysis hierarchy process. There are a total of 25 parameters criteria to calculate the potential future coastal zone development, including physics, water quality, and zoning properties. This DSS can serve as the foundation for instruction, knowledge, and application in developing rural coastal regions. Because of its breadth, this research endeavor is still ongoing. After calibration and verification, the initial study of the potential area of approximately 98,000 ha indicates that the model meets the accuracy requirement within the range of the root mean square error of approximately 0.184. Then, the outcomes of the hydrodynamic model simulation in DSS can be used as essential information for maritime development at this location. The outcomes demonstrate that the best areas for grouper FNC cultivation, seaweed cultivation, along with marine tourism are 6,163 ha, 91,000 ha, and 9,024 ha, respectively. It is expected that this research will contribute to sustainable future coastal zone development in the vicinity of Central Sulawesi, Indonesia.

 

Doi: 10.28991/CEJ-2023-09-08-02

Full Text: PDF


Keywords


Hydrodynamic Model; Central Sulawesi Indonesia; Coastal Potential; Cultivation; Decision Support System.

References


Cetin, M. (2016). Sustainability of urban coastal area management: A case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541. doi:10.1080/10549811.2016.1228072.

Boteler, B. (2014). Coastal zones: achieving sustainable management. Science Environment Policy, 2014, 46. doi:10.2779/53698.

Marnani, C. S., Rumambi, F. J., & Simatupang, H. (2021). Analysis of Connectivity Indonesia’s Maritime Global Axis Policy with one World One Belt Road China. Journal Online of Indonesian Defense University, 1(11), 1-17.

Ze, F., Wong, W. K., Alhasan, T. kamal, Al Shraah, A., Ali, A., & Muda, I. (2023). Economic development, natural resource utilization, GHG emissions and sustainable development: A case study of China. Resources Policy, 83, 103596. doi:10.1016/j.resourpol.2023.103596.

Asmal, I., Syarif, E., Amin, S., & Walenna, M. A. (2022). The Impact of the Environment and People’s Attitudes on Greywater Management in Slum Coastal Settlements. Civil Engineering Journal, 8(12), 2734-2748. doi:10.28991/CEJ-2022-08-12-05.

Hermawan, S. (2018). The Benefit of Decision Support System as Sustainable Environment Technology to Utilize Coastal Abundant Resources in Indonesia. MATEC Web of Conferences, 164, 01043. doi:10.1051/matecconf/201816401043.

Hermawan, S. (2016). Implementation of Decision Support System for Integrated Coastal Zone Management of Sustainable Mariculture Development Industry in Indonesia. Civil Engineering Dimension, 18(2), 117–126. doi:10.9744/ced.18.2.117-126.

Hermawan, Surya and Tjandra, Daniel and Purnomo, Joko (2018) The Benefit of Hydrodynamic Model As an Assessment of the Hydro-Environment Engineering in Decision Support System for the Sustainable Mariculture Development in Indonesia. In: 21st IAHR-APD Congress, 2-5 September, 2018, Yogyakarta, Indonesia.

Hermawan, S. (2014). Improvement and Application of a Decision Support System for Sustainable Floating Net Cage Finfish Cultures Development in Indonesia. PhD Thesis, Christian-Albrechts Universität Kiel, Kiel, Germany.

Ahmad, F., Draz, M. U., Su, L., & Rauf, A. (2019). Taking the bad with the good: The nexus between tourism and environmental degradation in the lower middle-income Southeast Asian economies. Journal of Cleaner Production, 233, 1240–1249. doi:10.1016/j.jclepro.2019.06.138.

Manca Zeichen, M., Ciotoli, G., & Archina, M. (2022). Geospatial analysis for fish farming across Tyrrhenian coast (Tuscany, central Italy). Ocean & Coastal Management, 226, 106261. doi:10.1016/j.ocecoaman.2022.106261.

Sarker, S., Akter, M., Rahman, M. S., Islam, M. M., Hasan, O., Kabir, M. A., & Rahman, M. M. (2021). Spatial prediction of seaweed habitat for mariculture in the coastal area of Bangladesh using a Generalized Additive Model. Algal Research, 60, 102490. doi:10.1016/j.algal.2021.102490.

Atzori, R., Fyall, A., & Miller, G. (2018). Tourist responses to climate change: Potential impacts and adaptation in Florida’s coastal destinations. Tourism Management, 69, 12–22. doi:10.1016/j.tourman.2018.05.005.

Garbossa, L. H. P., dos Santos, A. A., & Lapa, K. R. (2021). Seaweed dispersion under different environmental scenarios based on branches settling velocity and hydrodynamic Lagrangian model. Regional Studies in Marine Science, 47, 101909. doi:10.1016/j.rsma.2021.101909.

Spencer, N., Strobl, E., & Campbell, A. (2022). Sea level rise under climate change: Implications for beach tourism in the Caribbean. Ocean & Coastal Management, 225, 106207. doi:10.1016/j.ocecoaman.2022.106207.

Micallef, A. (2011). Marine Geomorphology. Geomorphological Mapping and the Study of Submarine Landslides. Developments in Earth Surface Processes, 15, 377–395. doi:10.1016/B978-0-444-53446-0.00013-6.

Dierssen, H. M., & Theberge, A. E. (2020). Bathymetry: assessment. In Coastal and Marine Environments. CRC Press, Boca Raton, United States. doi:10.1201/9780429441004-19.

Delft3D. (2023). About Delft3D. Delft, The Netherlands Available online: https://oss.deltares.nl/web/delft3d/about (accessed on April 2023).

Delft3D Flow User Manual. (2023). Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments, Netherlands. Available online: https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf (accessed on April 2023).

Girault, V., & Raviart, P. A. (1979). Finite element approximation of the Navier-Stokes equations. Springer, Berlin, Germany.

Delft3D Wave User Manual. (2023). Simulation of Short Crested Waves with SWAN. Deltares, Delft, Netherlands. Available online: https://content.oss.deltares.nl/delft3d4/Delft3D-WAVE_User_Manual.pdf (accessed on April 2023).

Fahmi, M., & Hafli, T. M. (2019). Numerical Simulation of Coastal Morphological Changes Due to Jetty Construction at Muara Lambada Lhok Aceh Besar Using Delft3D Software. Journal of Civil Engineering, 8(2), 50–59. doi:10.24815/jts.v8i2.13905.

Moody, J. (2019). What does RMSE really mean. Medium, San Francisco, United States. Available online: https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e (accessed on April 2023).

Lucas Segarra, E., Du, H., Ramos Ruiz, G., & Fernández Bandera, C. (2019). Methodology for the Quantification of the Impact of Weather Forecasts in Predictive Simulation Models. Energies, 12(7), 1309. doi:10.3390/en12071309.

Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O’Connor, F. M., & Dalvi, M. (2013). Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geoscientific Model Development, 6(2), 353–372. doi:10.5194/gmd-6-353-2013.

Mahoney, C., Hall, R. J., Hopkinson, C., Filiatrault, M., Beaudoin, A., & Chen, Q. (2018). A forest attribute mapping framework: A pilot study in a Northern boreal forest, Northwest Territories, Canada. Remote Sensing, 10(9), 1338 10 3390 10091338. doi:10.3390/rs10091338.

Waters, T. J. Lionata, H., Prasetyo Wibowo, T., Jones, R., Theuerkauf, S., Usman, S., Amin, I., & Ilman, M. (2019). Coastal conservation and sustainable livelihoods through seaweed aquaculture in Indonesia: A guide for buyers, conservation practitioners, and farmers, Version 1. The Nature Conservancy. Arlington VA, USA and Jakarta, Indonesia.

Friess, B., & Grémaud-Colombier, M. (2021). Policy outlook: Recent evolutions of maritime spatial planning in the European Union. Marine Policy, 132, 103428. doi:10.1016/j.marpol.2019.01.017.

Saaty, T. L. (1988). What is the Analytic Hierarchy Process? Mathematical Models for Decision Support. NATO ASI Series, 48. Springer, Berlin, Germany. doi:10.1007/978-3-642-83555-1_5.

Van der Wulp, S. A., Niederndorfer, K. R., Hesse, K. J., Runte, K. H., Mayerle, R., & Hanafi, A. (2010). Sustainable environmental management for tropical floating net cage mariculture, a modeling approach. XVIIth World Congress of the International Commission of Agricultural Engineering (CIGR), 13-17 June, 2010, Québec City, Canada.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Surya Hermawan, David Bangguna, Edwin Mihardja, Jason Fernaldi, Jescey Edlin Prajogo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message