Effect of Curing Temperature on Mechanical Properties of Sanitary Ware Porcelain based Geopolymer Mortar

Woratid Wongpattanawut, Borvorn Israngkura Na Ayudhya

Abstract


The objective of this study was to investigate the effect of curing temperature on the mechanical properties of sanitary ware porcelain powder-based geopolymer paste and mortar under various curing temperatures. The setting time, porosity, water absorption, and compressive strength of specimens mixed with alkaline concentrations of 8M, 10M, 12M, and 14M were compared. All mortar cube (50×50×50 mm) specimens were placed into drying ovens for 24 hours at 60°C, 75°C, 90°C, and 105°C, respectively. The specimens were then air-cured for 1, 3, 7, 14, and 28 days. The results showed that the elevated curing temperature accelerated the polymerization process of the porcelain geopolymerization reaction. The setting time varied between 89 mins and 380 mins. It showed variability depending on alkaline concentration and initial curing temperature. The setting time of pastes decreased when alkaline concentrations increased. An increasing temperature in the drying oven decreased the initial and final setting times. Similar to this, the rate of water absorption and permeability of porcelain-based geopolymer mortar specimens decreased with drying oven temperatures and increments in alkaline concentration. The lowest water absorption and porosity of the specimen were 2.1% and 15.7%, respectively. The compressive strength increased as drying oven temperatures and alkaline concentrations increased. The highest 28 day compressive strength was found in 14M specimens with 105°C curing temperatures. The ultimate compressive strength was 64.45 N/mm2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were investigated to study the microstructural properties of the geopolymers.

 

Doi: 10.28991/CEJ-2023-09-08-01

Full Text: PDF


Keywords


Geopolymer; Setting Time; Porosity; Porcelain; Mortar.

References


Statista. (2022) Construction industry in Thailand. Statista Research Department, Hamburg, Germany. Available online: https://www.statista.com/topics/6998/construction-industry-in-thailand/#topicOverview (accessed on May 2023)

Baraldi, L. (2021) World sanitaryware imports and exports, Ceramic world review technology news markets, 64-75. Available online: https://www.ceramicworldweb.com/en/economics-and-markets/world-sanitaryware-imports-and-exports-2021 (accessed on April 2023).

Zuda, L., Bayer, P., Rovnaník, P., & Černý, R. (2008). Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cement and Concrete Composites, 30(4), 266–273. doi:10.1016/j.cemconcomp.2007.11.003.

Fortuna, A., Fortuna, D.M., Martini, E. (2017). An Industrial Approach to Ceramics: Sanitaryware. Plinius, 43, 138–145. doi:10.19276/plinius.2017.02019.

Nasir, M., Johari, M. A. M., Maslehuddin, M., Yusuf, M. O., & Al-Harthi, M. A. (2020). Influence of heat curing period and temperature on the strength of silico-manganese fume-blast furnace slag-based alkali-activated mortar. Construction and Building Materials, 251, 118961. doi:10.1016/j.conbuildmat.2020.118961.

Muñiz-Villarreal, M. S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J. R., Reyes-Araiza, J. L., Rubio-Ávalos, J. C., Pérez-Bueno, J. J., Apatiga, L. M., Zaldivar-Cadena, A., & Amigó-Borrás, V. (2011). The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters, 65(6), 995–998. doi:10.1016/j.matlet.2010.12.049.

Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. Research Report GC1, Curtin University of Technology, Perth, Australia.

Provis, J. L., & Van Deventer, J. S. J. (2009). Geopolymers: structures, processing, properties and industrial applications. Elsevier, Amsterdam, Netherlands.

Arnoult, M., Perronnet, M., Autef, A., & Rossignol, S. (2018). How to control the geopolymer setting time with the alkaline silicate solution. Journal of Non-Crystalline Solids, 495(1), 59–66. doi:10.1016/j.jnoncrysol.2018.02.036.

Luhar, I., Luhar, S., Abdullah, M. M. A. B., Nabiałek, M., Sandu, A. V., Szmidla, J., Jurczyńska, A., Razak, R. A., Aziz, I. H. A., Jamil, N. H., & Deraman, L. M. (2021). Assessment of the suitability of ceramic waste in geopolymer composites: An appraisal. Materials, 14(12), 3279. doi:10.3390/ma14123279.

Shoaei, P., Musaeei, H. R., Mirlohi, F., Narimani zamanabadi, S., Ameri, F., & Bahrami, N. (2019). Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 227, 116686. doi:10.1016/j.conbuildmat.2019.116686.

Reig, L., Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., & Payá, J. (2013). Alkaline activation of ceramic waste materials. Waste and Biomass Valorization, 4(4), 729–736. doi:10.1007/s12649-013-9197-z.

Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 99, 144–148. doi:10.1016/j.clay.2014.06.024.

Nagral, M. R., Ostwal, T., & Chitawadagi, M. V. (2014) Effect of curing temperature and curing hours on the properties of geo-polymer concrete, International Journal of Computational Engineering Research. 4(9), 2250-3005.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. doi:10.1007/s10853-006-0637-z.

de Oliveira, L. B., de Azevedo, A. R. G., Marvila, M. T., Pereira, E. C., Fediuk, R., & Vieira, C. M. F. (2022). Durability of geopolymers with industrial waste. Case Studies in Construction Materials, 16, 839. doi:10.1016/j.cscm.2021.e00839.

Kaur, M., Singh, J., & Kaur, M. (2018). Microstructure and strength development of fly ash-based geopolymer mortar: Role of nano-metakaolin. Construction and Building Materials, 190, 672–679. doi:10.1016/j.conbuildmat.2018.09.157.

Marvila, M. T., Azevedo, A. R. G. de, & Vieira, C. M. F. (2021). Reaction mechanisms of alkali-activated materials. Revista IBRACON de Estruturas e Materiais, 14(3). doi:10.1590/s1983-41952021000300009.

Amigó, J. M., Serrano, F. J., Kojdecki, M. A., Bastida, J., Esteve, V., Reventós, M. M., & Martí, F. (2005). X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society, 25(9), 1479–1486. doi:10.1016/j.jeurceramsoc.2004.05.019.

Liu, T., Zhang, J., Wu, J., Liu, J., Li, C., Ning, T., Luo, Z., Zhou, X., Yang, Q., & Lu, A. (2019). The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength. Journal of Cleaner Production, 223, 790–800. doi:10.1016/j.jclepro.2019.03.162.

Amari, S., Darestani, M., Millar, G. J., Rintoul, L., & Samali, B. (2019). Microchemistry and microstructure of sustainable mined zeolite-geopolymer. Journal of Cleaner Production, 234, 1165–1177. doi:10.1016/j.jclepro.2019.06.237.

Iqbal, Y., & Lee, W. E. (2000). Microstructural evolution in triaxial porcelain. Journal of the American Ceramic Society, 83(12), 3121–3127. doi:10.1111/j.1151-2916.2000.tb01692.x.

Zegardło, B., Szeląg, M., & Ogrodnik, P. (2016). Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes – The method of production and the interfacial transition zone. Construction and Building Materials, 122, 736–742. doi:10.1016/j.conbuildmat.2016.06.112.

Vitola, L., Pundiene, I., Pranckeviciene, J., & Bajare, D. (2020). The impact of the amount of water used in activation solution and the initial temperature of paste on the rheological behaviour and structural evolution of metakaolin-based geopolymer pastes. Sustainability (Switzerland), 12(19), 8216. doi:10.3390/su12198216.

Chi, M. (2015). Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars. Construction and Building Materials, 99, 128–136. doi:10.1016/j.conbuildmat.2015.09.029.

Geraldo, R. H., Fernandes, L. F. R., & Camarini, G. (2021). Mechanical properties of porcelain waste alkali-activated mortar. Open Ceramics, 8, 100184. doi:10.1016/j.oceram.2021.100184.

Xu, N., Li, S., Li, Y., Xue, Z., Yuan, L., Zhang, J., & Wang, L. (2015). Preparation and properties of porous ceramic aggregates using electrical insulators waste. Ceramics International, 41(4), 5807–5811. doi:10.1016/j.ceramint.2015.01.009.

ASTM C618-19. (2022). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.

Li, H. Jian, & Sun, H. hu. (2009). Microstructure and cementitious properties of calcined clay-containing gangue. International Journal of Minerals, Metallurgy and Materials, 16(4), 482–486. doi:10.1016/S1674-4799(09)60084-4.

Belmokhtar, N., El Ayadi, H., Ammari, M., & Ben Allal, L. (2018). Effect of structural and textural properties of a ceramic industrial sludge and kaolin on the hardened geopolymer properties. Applied Clay Science, 162, 1–9. doi:10.1016/j.clay.2018.05.029.

ASTM C187-04. (2010) Standard Test Method for Normal Consistency of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0187-04.

ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.

Collins, F., & Sanjayan, J. G. (1999). Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cement and Concrete Research, 29(4), 607–610. doi:10.1016/S0008-8846(98)00203-8.

Vieira, A. W., Innocentini, M. D. de M., Mendes, E., Gomes, T., Demarch, A., Montedo, O. R. K., & Angioletto, E. (2017). Comparison of Methods for Determining the Water Absorption of Glazed Porcelain Stoneware Ceramic Tiles. Materials Research, 20(suppl 2), 637–643. doi:10.1590/1980-5373-mr-2017-0089.

Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12–23. doi:10.1016/j.micromeso.2016.07.005.

ASTM C191-8a. (2019). Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-18A.

Temuujin, J., Williams, R. P., & van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12–13), 5276–5280. doi:10.1016/j.jmatprotec.2009.03.016.

Linda Bih, N., Aboubakar Mahamat, A., Hounkpè Bidossèssi, J., Azikiwe Onwualu, P., & Boakye, E. E. (2021). The effect of polymer waste addition on the compressive strength and water absorption of geopolymer ceramics. Applied Sciences (Switzerland), 11(8), 3540. doi:10.3390/app11083540.

Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Almattarneh, H., & Mohammed, B. S. (2016). Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Engineering, 148, 710–717. doi:10.1016/j.proeng.2016.06.581.

Jindal, B. B., Singhal, D., Sharma, S. K., Ashish, D. K., & Parveen, P. (2017). Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine. Advances in Concrete Construction, 5(1), 17–29. doi:10.12989/acc.2017.5.1.17.

Cristelo, N., Coelho, J., Miranda, T., Palomo, Á., & Fernández-Jiménez, A. (2019). Alkali activated composites – An innovative concept using iron and steel slag as both precursor and aggregate. Cement and Concrete Composites, 103, 11–21. doi:10.1016/j.cemconcomp.2019.04.024.

Ukritnukun, S., Koshy, P., Rawal, A., Castel, A., & Sorrell, C. C. (2020). Predictive model of setting times and compressive strengths for low-alkali, ambient-cured, fly ash/slag-based geopolymers. Minerals, 10(10), 1–21. doi:10.3390/min10100920.

Zulkifli, N. N. I., Abdullah, M. M. A. B., Przybył, A., Pietrusiewicz, P., Salleh, M. A. A. M., Aziz, I. H., Kwiatkowski, D., Gacek, M., Gucwa, M., & Chaiprapa, J. (2021). Influence of sintering temperature of kaolin, slag, and fly ash geopolymers on the microstructure, phase analysis, and electrical conductivity. Materials, 14(9), 2213. doi:10.3390/ma14092213.

Liew, Y. M., Kamarudin, H., Al Bakri, A. M. M., Bnhussain, M., Luqman, M., Nizar, I. K., Ruzaidi, C. M., & Heah, C. Y. (2013). Effect of curing regimes on metakaolin geopolymer pastes produced from geopolymer powder. Advanced Materials Research, 626, 931–936. doi:10.4028/www.scientific.net/AMR.626.931.

Sindhunata, Van Deventer, J. S. J., Lukey, G. C., & Xu, H. (2006). Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Industrial and Engineering Chemistry Research, 45(10), 3559–3568. doi:10.1021/ie051251p.

Gowram, I. (2022). Experimental and analytical study of high-strength concrete containing natural zeolite and additives. Civil Engineering Journal, 8(10), 2318-2335. doi:10.28991/CEJ-2022-08-10-019.

Ranjbar, N., Kashefi, A., & Maheri, M. R. (2018). Hot-pressed geopolymer: Dual effects of heat and curing time. Cement and Concrete Composites, 86, 1–8. doi:10.1016/j.cemconcomp.2017.11.004.

Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2015). Final Setting Time and Compressive Strength of Fly Ash and GGBS-Based Geopolymer Paste and Mortar. Arabian Journal for Science and Engineering, 40(11), 3067–3074. doi:10.1007/s13369-015-1757-z.

Vikas, G., & Rao, T. D. G. (2021). Setting Time, Workability and Strength Properties of Alkali Activated Fly Ash and Slag Based Geopolymer Concrete Activated with High Silica Modulus Water Glass. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(3), 1483–1492. doi:10.1007/s40996-021-00598-8.

Ababneh, A., Matalkah, F., & Aqel, R. (2020). Synthesis of kaolin-based alkali-activated cement: carbon footprint, cost and energy assessment. Journal of Materials Research and Technology, 9(4), 8367–8378. doi:10.1016/j.jmrt.2020.05.116.

Karakoç, M. B., Türkmen, İ., Maraş, M. M., Kantarci, F., Demirboğa, R., & Uğur Toprak, M. (2014). Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Construction and Building Materials, 72, 283–292. doi:10.1016/j.conbuildmat.2014.09.021.

Ranjbar, N., Kuenzel, C., Spangenberg, J., & Mehrali, M. (2020). Hardening evolution of geopolymers from setting to equilibrium: A review. Cement and Concrete Composites, 114, 103729. doi:10.1016/j.cemconcomp.2020.103729.

Elyamany, H. E., Abd Elmoaty, A. E. M., & Elshaboury, A. M. (2018). Setting time and 7-day strength of geopolymer mortar with various binders. Construction and Building Materials, 187, 974–983. doi:10.1016/j.conbuildmat.2018.08.025.

Nagajothi, S., Elavenil, S., Angalaeswari, S., Natrayan, L., & Mammo, W. D. (2022). Durability studies on fly ash based geopolymer concrete incorporated with slag and alkali solutions. Advances in Civil Engineering, 2022. doi:10.1155/2022/7196446.

Olivia, M., & Nikraz, H. (2011). Strength and water penetrability of fly ash geopolymer concrete. Journal of Engineering and Applied Sciences, 6(7), 70-78.

Lavanya, G., & Jegan, J. (2015). Durability Study on High Calcium Fly Ash Based Geopolymer Concrete. Advances in Materials Science and Engineering, 2015, 1–7. doi:10.1155/2015/731056.

Zaidi, F.H.A., Ahmad, R., Mustafa Al Bakri Abdullah, M., Faheem Mohd Tahir, M., Yahya, Z., Mastura Wan Ibrahim, W., & Syauqi Sauffi, A. (2019). Performance of Geopolymer Concrete when Exposed to Marine Environment. IOP Conference Series: Materials Science and Engineering, 551(1), 012092. doi:10.1088/1757-899x/551/1/012092.

Zuaiter, M., El-Hassan, H., El-Maaddawy, T., & El-Ariss, B. (2022). Properties of Slag-Fly Ash Blended Geopolymer Concrete Reinforced with Hybrid Glass Fibers. Buildings, 12(8), 1114. doi:10.3390/buildings12081114.

El-Hassan, H., & Elkholy, S. (2021). Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement. Construction and Building Materials, 311, 125313. doi:10.1016/j.conbuildmat.2021.125313.

Ramli, M. I. I., Salleh, M. A. A. M., Abdullah, M. M. A. B., Aziz, I. H., Ying, T. C., Shahedan, N. F., Kockelmann, W., Fedrigo, A., Sandu, A. V., Vizureanu, P., Chaiprapa, J., & Nergis, D. D. B. (2022). The Influence of Sintering Temperature on the Pore Structure of an Alkali-Activated Kaolin-Based Geopolymer Ceramic. Materials, 15(7). doi:10.3390/ma15072667.

Arslan, A. A., Uysal, M., Yılmaz, A., Al-mashhadani, M. M., Canpolat, O., Şahin, F., & Aygörmez, Y. (2019). Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Construction and Building Materials, 225, 909-926. doi:10.1016/j.conbuildmat.2019.07.235.

Manjunath, G. S., Giridhar, C., & Jadhav, M. (2011). Compressive Strength Development in Ambient Cured Geo-polymer Mortar. International Journal of Earth Sciences and Engineering, 4(6), 830-834.

Zhang, P., Wang, K., Wang, J., Guo, J., & Ling, Y. (2021). Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. Journal of Cleaner Production, 294, 126193. doi:10.1016/j.jclepro.2021.126193.

Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produce by granulated blast furnace slag. Minerals Engineering, 16(3), 205–210. doi:10.1016/S0892-6875(03)00008-6.

Wang, J. W., & Cheng, T. W. (2003). Production geopolymer materials by coal fly ash. Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, 10-14 November, 2003, Tainan, Taiwan.

Mohd Mortar, N. A., Abdullah, M. M. A. B., Abdul Razak, R., Abd Rahim, S. Z., Aziz, I. H., Nabiałek, M., Jaya, R. P., Semenescu, A., Mohamed, R., & Ghazali, M. F. (2022). Geopolymer Ceramic Application: A Review on Mix Design, Properties and Reinforcement Enhancement. Materials, 15(21), 7567. doi:10.3390/ma15217567.

Poornima, N., Katyal, D., Revathi, T., Sivasakthi, M., & Jeyalakshmi, R. (2021). Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature. Materials Today: Proceedings, 47, 863–870. doi:10.1016/j.matpr.2021.04.087.

Girish, M. G., Shetty, K. K., & Nayak, G. (2022). Synthesis of Fly-ash and Slag Based Geopolymer Concrete for Rigid Pavement. Materials Today: Proceedings, 60, 46–54. doi:10.1016/j.matpr.2021.11.332.

Ma, X., Zhao, Y., Liu, M., Xia, Y., & Yang, Y. (2023). Sodium gluconate as a retarder modified sewage sludge ash-based geopolymers: Mechanism and environmental assessment. Journal of Cleaner Production, 138317. doi:10.1016/j.jclepro.2023.138317.

Hájková, P. (2018). Kaolinite claystone-based geopolymer materials: Effect of chemical composition and curing conditions. Minerals, 8(10), 444. doi:10.3390/min8100444.

Matalkah, F., Aqel, R., & Ababneh, A. (2020). Enhancement of the Mechanical Properties of Kaolin Geopolymer Using Sodium Hydroxide and Calcium Oxide. Procedia Manufacturing, 44, 164–171. doi:10.1016/j.promfg.2020.02.218.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Borvorn Israngkura Na Ayudhya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message