Mechanical and Postfire Structural Performances of Concrete under Elevated Temperatures

Vishal Murugan, Alireza Bahrami, Rakshit Srivastava, K. S. Satyanarayanan, Prakash Murugan, J. S. Arvind


This article investigates the mechanical and postfire structural performances of concrete under elevated temperatures (200°C, 400°C, 600°C, and 800°C) after 7 and 28 days of concrete curing. The main objective of this study is to evaluate the post-fire behavior of concrete structures and how their modulus of elasticity values influence their structural parameters. Mechanical studies, namely, the compressive strength, splitting tensile strength, and flexural strength, were performed on cubes, cylinders, and prism beams under normal and elevated temperatures. Non-destructive tests, like rebound hammer and ultrasonic pulse velocity, were also conducted on concrete cubes to obtain the strength of concrete before and after heating the specimens. Microstructural studies, in particular, scanning electron microscope and energy dispersive x-ray spectroscopy, were done to analyze the changes in the chemical composition of concrete under the effect of the temperatures. The weight loss of the concrete specimens was assessed under the elevated temperatures. The results indicated that the geometric shapes of the specimens influenced the loss in the moisture content of concrete under an elevated temperature scenario. Microstructural studies revealed the changes in the chemical composition under the elevated temperatures. The results of this research can be further integrated for industrial applications.


Doi: 10.28991/CEJ-2023-09-08-04

Full Text: PDF


Post-Fire Structural Performance; Elevated Temperature; Geometric Shape; Mechanical Behavior; Microstructural Studies.


Vishal, M., & Satyanarayanan, K. S. (2022). Analytical investigation on progressive collapse of 3-D reinforced concrete frames under high temperature. Resilient Infrastructure. Lecture Notes in Civil Engineering, 202. Springer, Singapore. doi:10.1007/978-981-16-6978-1_21.

Vishal, M., & Satyanarayanan, K. S. (2021). A review on research of fire-induced progressive collapse on structures. Journal of Structural Fire Engineering, 12(3), 410–425. doi:10.1108/JSFE-07-2020-0023.

Khoury, G. A. (2000). Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), 429–447. doi:10.1002/pse.51.

Li, L. Y., Purkiss, J. A., & Tenchev, R. T. (2002). An engineering model for coupled heat and mass transfer analysis in heated concrete. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 216(2), 213–224. doi:10.1243/0954406021525142.

Vishal, M., & Satyanarayanan, K. S. (2023). Study on optimum concrete cover thickness in RC beam and columns under high temperature. Journal of Structural Fire Engineering. doi:10.1108/JSFE-11-2022-0035.

Murugan, V., & Srinivasan, S. K. (2022). Influence of cover thickness in structural frames exposed to fire and service loads. Environmental Science and Pollution Research, 29(57), 85955–85968. doi:10.1007/s11356-021-15925-9.

Bažant, Z. P., & Prat, P. C. (1988). Effect of temperature and humidity on fracture energy. ACI Materials Journal, 85(4), 262–271. doi:10.14359/2127.

Thelandersson, S. (1987). Modeling of combined thermal and mechanical action in concrete. Journal of Engineering Mechanics, 113(6), 893–906. doi:10.1061/(asce)0733-9399(1987)113:6(893).

Schneider, U. (1988). Concrete at high temperatures - A general review. Fire Safety Journal, 13(1), 55–68. doi:10.1016/0379-7112(88)90033-1.

Chan, S. Y. N., Peng, G. F., & Chan, J. K. W. (1996). Comparison between high strength concrete and normal strength concrete subjected to high temperature. Materials and Structures/Materiaux et Constructions, 29(10), 616–619. doi:10.1007/bf02485969.

Short, N. R., Purkiss, J. A., & Guise, S. E. (2001). Assessment of fire damaged concrete using colour image analysis. Construction and Building Materials, 15(1), 9–15. doi:10.1016/S0950-0618(00)00065-9.

Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8), 892–900. doi:10.1061/(asce)0733-9399(1998)124:8(892).

Schrefler, B. A., Majorana, C. E., Khoury, G. A., & Gawin, D. (2002). Thermo‐hydro‐mechanical modelling of high performance concrete at high temperatures. Engineering Computations, 19(7), 787–819. doi:10.1108/02644400210444320.

Xu, P., Cui, Y., Dai, J., Zhang, M., & Ding, Y. (2022). High-temperature deterioration mechanism of textile-reinforced concrete with different cementitious materials. Journal of Materials in Civil Engineering, 34(1), 1–13. doi:10.1061/(asce)mt.1943-5533.0004027.

Varghese, A., N, A., Arulraj G, P., & Johnson Alengaram, U. (2019). Influence of fibers on bond strength of concrete exposed to elevated temperature. Journal of Adhesion Science and Technology, 33(14), 1521–1543. doi:10.1080/01694243.2019.1602889.

Zhao, J., Chen, L., Liu, G., & Meng, X. (2022). Compressive properties and microstructure of polymer-concrete under dry heat environment at 80 °C. Arabian Journal for Science and Engineering, 47(10), 12349–12364. doi:10.1007/s13369-021-06405-w.

Abolhasani, A., Shakouri, M., Dehestani, M., Samali, B., & Banihashemi, S. (2022). A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures. Engineering Fracture Mechanics, 261, 108221. doi:10.1016/j.engfracmech.2021.108221.

Phan, L. T., & Carino, N. J. (1998). Review of mechanical properties of HSC at elevated temperature. Journal of Materials in Civil Engineering, 10(1), 58–65. doi:10.1061/(asce)0899-1561(1998)10:1(58).

Handoo, S. K., Agarwal, S., & Agarwal, S. K. (2002). Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cement and Concrete Research, 32(7), 1009–1018. doi:10.1016/S0008-8846(01)00736-0.

Nechnech, W., Meftah, F., & Reynouard, J. M. (2002). An elasto-plastic damage model for plain concrete subjected to high temperatures. Engineering Structures, 24(5), 597–611. doi:10.1016/S0141-0296(01)00125-0.

Shin, K. Y., Kim, S. B., Kim, J. H., Chung, M., & Jung, P. S. (2002). Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nuclear Engineering and Design, 212(1–3), 233–241. doi:10.1016/S0029-5493(01)00487-3.

Willam, K., Rhee, I., & Shing, B. (2004). Interface damage model for thermomechanical degradation of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 193(30–32), 3327–3350. doi:10.1016/j.cma.2003.09.020.

Youssef, M. A., & Moftah, M. (2007). General stress-strain relationship for concrete at elevated temperatures. Engineering Structures, 29(10), 2618–2634. doi:10.1016/j.engstruct.2007.01.002.

Caetano, H., Rodrigues, J. P. C., & Pimienta, P. (2019). Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete. Construction and Building Materials, 227, 116721. doi:10.1016/j.conbuildmat.2019.116721.

Reddy, D. H., & Ramaswamy, A. (2017). Influence of mineral admixtures and aggregates on properties of different concretes under high temperature conditions I: Experimental study. Journal of Building Engineering, 14, 103–114. doi:10.1016/j.jobe.2017.09.013.

IS 10262. (2019). Concrete Mix Proportioning-Guidelines. Bureau of Indian Standards, New Delhi, India.

IS 456. (2000). Plain and Reinforced Concrete. Bureau of Indian Standards, New Delhi, India.

Poon, C. S., Azhar, S., Anson, M., & Wong, Y. L. (2001). Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cement and Concrete Research, 31(9), 1291–1300. doi:10.1016/S0008-8846(01)00580-4.

Peng, G. F., & Huang, Z. S. (2008). Change in microstructure of hardened cement paste subjected to elevated temperatures. Construction and Building Materials, 22(4), 593–599. doi:10.1016/j.conbuildmat.2006.11.002.

Rithin, R. K., Crasta, V., & Praveen, B. M. (2015). Enhancement of optical, mechanical and micro structural properties in nanocomposite films of PVA doped with WO3 nanoparticles. International Journal of Structural Integrity, 6(3), 338–354. doi:10.1108/IJSI-08-2014-0036.

Raja Rajeshwari, B., & Sivakumar, M. V. N. (2022). Fracture properties of fibrous self-compacting concrete using three-point bend test and wedge splitting test methods. International Journal of Structural Integrity, 13(2), 278–296. doi:10.1108/IJSI-08-2021-0093.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-04


  • There are currently no refbacks.

Copyright (c) 2023 Vishal Murugan, Alireza Bahrami, Rakshit Srivastava, Satyanarayanan Kachabeswara Srinivasan, Prakash Murugan, Arvind Jayalakshmi Satyanarayanan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.