An Investigation on Eco Friendly Self-Compacting Concrete Using Spent Catalyst and Development of Structural Elements
Abstract
Doi: 10.28991/CEJ-2023-09-05-08
Full Text: PDF
Keywords
References
González-Aviña, J. V., Juárez-Alvarado, C. A., Terán-Torres, B. T., Mendoza-Rangel, J. M., Durán-Herrera, A., & Rodríguez-Rodríguez, J. A. (2022). Influence of fibers distribution on direct shear and flexural behavior of synthetic fiber-reinforced self-compacting concrete. Construction and Building Materials, 330, 1055–1070. doi:10.1016/j.conbuildmat.2022.127255.
Adharsh, M., Mahadevaswamy, N., Nithin, S., Oriette Sharon Pinto, Arjun, V., & Kanmani, S. S. (2019). Assessment of Self Compacting Concrete Using Foundry Sand as Partial Replacement for Fine Aggregates. Journal of Ceramics and Concrete Sciences, 4(1), 35-41. doi:10.5281/zenodo.2634714.
Afolayan, J. O., Wilson, U. N., & Zaphaniah, B. (2019). Effect of sisal fibre on partially replaced cement with Periwinkles Shell Ash (PSA) concrete. Journal of Applied Sciences and Environmental Management, 23(4), 715. doi:10.4314/jasem.v23i4.22.
Rattanasak, U., Jaturapitakkul, C., & Sudaprasert, T. (2001). Compressive strength and heavy metal leaching behaviour of mortars containing spent catalyst. Waste Management and Research, 19(5), 456–464. doi:10.1177/0734242X0101900511.
Tseng, Y. S., Huang, C. L., & Hsu, K. C. (2005). The pozzolanic activity of a calcined waste FCC catalyst and its effect on the compressive strength of cementitious materials. Cement and Concrete Research, 35(4), 782–787. doi:10.1016/j.cemconres.2004.04.026.
Sun, D. D. (2003). Stabilization treatment for reutilization of spent refinery catalyst into value-added product. Energy Sources, 25(6), 607–615. doi:10.1080/00908310390195679.
António, J., Silva, P., & Costa, C. (2013, September). Fresh properties and compressive strength of self-compacting concrete containing waste fluid catalytic cracking catalyst. 7th RILEM Conference on Self-Compacting Concrete (67th RILEM Week), 1-4 September, 2013, Paris, France.
Abunassar, N., Alas, M., & Ali, S. I. A. (2023). Prediction of compressive strength in self-compacting concrete containing fly ash and silica fume using ANN and SVM. Arabian Journal for Science and Engineering, 48(4), 5171-5184. doi:10.1007/s13369-022-07359-3.
Ofuyatan, O. M., Agbawhe, O. B., Omole, D. O., Igwegbe, C. A., & Ighalo, J. O. (2022). RSM and ANN modelling of the mechanical properties of self-compacting concrete with silica fume and plastic waste as partial constituent replacement. Cleaner Materials, 4, 100065. doi:10.1016/j.clema.2022.100065.
Xie, Y., Liu, B., Yin, J., & Zhou, S. (2002). Optimum mix parameters of high-strength self-compacting concrete with ultrapulverized fly ash. Cement and Concrete Research, 32(3), 477–480. doi:10.1016/S0008-8846(01)00708-6.
Okamura, H., & Ozawa, K. (1995). Mix design for self-compacting concrete. Concrete library of JSCE, 25(6), 107-120.
Ozawa, K., Maekawa, K., & Okamura, H. (1992). Development of high performance concrete. Journal of the Faculty of Engineering, University of Tokyo, Series B; Japan, 41(3), 381-439.
Okamura, H., Ouchi, M., & Concrete, S. C. (1999). Development, present use and future. Proceedings of the 1st International Symposium on Self-Compacting Concrete, 13-14 September, 1999, Stockholm, Sweden.
Okamura, H., & Ouchi, M. (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology, 1(1), 5–15. doi:10.3151/jact.1.5.
Domone, P. L. (2007). A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composites, 29(1), 1–12. doi:10.1016/j.cemconcomp.2006.07.010.
Khaleel, O. R., & Abdul Razak, H. (2014). Mix design method for self-compacting metakaolin concrete with different properties of coarse aggregate. Materials and Design, 53, 691–700. doi:10.1016/j.matdes.2013.07.072.
Dinakar, P. (2012). Design of self-compacting concrete with fly ash. Magazine of Concrete Research, 64(5), 401–409. doi:10.1680/macr.10.00167.
Li, J., Yin, J., Zhou, S., & Li, Y. (2005). Mix proportion calculation method of self-compacting high performance concrete. Proceedings of the First International Symposium on Design, Performance and Use of Self-Consolidating SCC, 26-28 May, 2005, Changsha, China.
Parra, C., Valcuende, M., & Gómez, F. (2011). Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction and Building Materials, 25(1), 201–207. doi:10.1016/j.conbuildmat.2010.06.037.
Shi, C., & Wu, Y. (2005). Mixture proportioning and properties of self-consolidating lightweight concrete containing glass powder. ACI Materials Journal, 102(5), 355–363. doi:10.14359/14715.
Sonebi, M. (2004). Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans. Cement and Concrete Research, 34(7), 1199–1208. doi:10.1016/j.cemconres.2003.12.022.
Diamantonis, N., Marinos, I., Katsiotis, M. S., Sakellariou, A., Papathanasiou, A., Kaloidas, V., & Katsioti, M. (2010). Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete. Construction and Building Materials, 24(8), 1518–1522. doi:10.1016/j.conbuildmat.2010.02.005.
Mansour, W. I., Yazbeck, F. H., & Wallevik, O. H. (2013). EcoCrete-Xtreme: Extreme flow, service life and carbon footprint reduction. Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, 12-15 May, 2013, Chicago, United States.
Khayat, K. H., Ghezal, A., & Hadriche, M. S. (1999). Factorial design models for proportioning self-consolidating concrete. Materials and Structures/Materiaux et Constructions, 32(223), 679–686. doi:10.1007/bf02481706.
Saak, A. W., Jennings, H. M., & Shah, S. P. (2002). New Methodology for Designing Self-Compacting Concrete. ACI Materials Journal, 98(6). doi:10.14359/10841.
Abo Dhaheer, M. S., Al-Rubaye, M. M., Alyhya, W. S., Karihaloo, B. L., & Kulasegaram, S. (2015). Proportioning of self–compacting concrete mixes based on target plastic viscosity and compressive strength: Part I - mix design procedure. Journal of Sustainable Cement-Based Materials, 5(4), 199–216. doi:10.1080/21650373.2015.1039625.
Hu, J., & Wang, K. (2011). Effect of coarse aggregate characteristics on concrete rheology. Construction and Building Materials, 25(3), 1196–1204. doi:10.1016/j.conbuildmat.2010.09.035.
Wang, X., Wang, K., Taylor, P., & Morcous, G. (2014). Assessing particle packing based self-consolidating concrete mix design method. Construction and Building Materials, 70, 439–452. doi:10.1016/j.conbuildmat.2014.08.002.
Bouziani, T. (2013). Assessment of fresh properties and compressive strength of self-compacting concrete made with different sand types by mixture design modelling approach. Construction and Building Materials, 49, 308–314. doi:10.1016/j.conbuildmat.2013.08.039.
Van Khanh, B., & Montgomery, D. (1999). Mixture proportioning method for self-compacting high performance concrete with minimum paste volume. Proceedings of the 1st International Symposium on Self-Compacting Concrete, 13-14 September, 1999, Stockholm, Sweden.
Sadeghbeigi, R. (2012). Fluid Catalytic Cracking Handbook. Gulf publishing company, Houston, United States. doi:10.1016/C2010-0-67291-9.
Bukowska, M., Pacewska, B., & Wilińska, I. (2003). Corrosion resistance of cement mortars containing spent catalyst of fluidized bed cracking (FBCC) as an additive. Journal of Thermal Analysis and Calorimetry, 74(3), 931–942. doi:10.1023/B:JTAN.0000011025.26715.f5.
Faraj, R. H., Hama Ali, H. F., Sherwani, A. F. H., Hassan, B. R., & Karim, H. (2020). Use of recycled plastic in self-compacting concrete: A comprehensive review on fresh and mechanical properties. Journal of Building Engineering, 30, 111–118. doi:10.1016/j.jobe.2020.101283.
Gupta, N., Siddique, R., & Belarbi, R. (2021). Sustainable and Greener Self-Compacting Concrete incorporating Industrial By-Products: A Review. Journal of Cleaner Production, 284. doi:10.1016/j.jclepro.2020.124803.
Kumar, B. N., & Kumar, P. P. (2022). Prediction on Flexural strength of High Strength Hybrid Fiber Self Compacting Concrete by using Artificial Intelligence. Journal of Artificial Intelligence and Capsule Networks, 4(1), 1–16. doi:10.36548/jaicn.2022.1.001.
Baali, L., Belagraa, L., Chikouche, M. A., & Zeghichi, L. (2021). Study of the Effect of Plastic Waste Fibers Incorporation on the Behavior of Self Compacting Concrete. Annals of Chemistry: Material Science, 45(5), 417–421. doi:10.18280/acsm.450508.
Md Zain, M. R., Oh, C. L., & Lee, S. W. (2021). Investigations on rheological and mechanical properties of self-compacting concrete (SCC) containing 0.6 μm eggshell as partial replacement of cement. Construction and Building Materials, 303, 200–212. doi:10.1016/j.conbuildmat.2021.124539.
Serraye, M., Kenai, S., & Boukhatem, B. (2021). Prediction of compressive strength of self-compacting concrete (SCC) with silica fume using neural networks models. Civil Engineering Journal, 7(1), 118–139. doi:10.28991/cej-2021-03091642.
Pinto, C. A., Büchler, P. M., & Dweck, J. (2007). Pozzolanic properties of a residual FCC catalyst during the early stages of cement hydration. Journal of Thermal Analysis and Calorimetry, 87(3), 715–720. doi:10.1007/s10973-006-7772-2.
Dweck, J., Pinto, C. A., & Büchler, P. M. (2008). Study of a Brazilian spent catalyst as cement aggregate by thermal and mechanical analysis. Journal of Thermal Analysis and Calorimetry, 92(1), 121–127. doi:10.1007/s10973-007-8750-z.
Singh, V., & Sangle, K. (2022). Analysis of vertically oriented coupled shear wall interconnected with coupling beams. HighTech and Innovation Journal, 3(2), 230-242. doi:10.28991/HIJ-2022-03-02-010.
Furimsky, E. (1996). Spent refinery catalysts: Environment, safety and utilization. Catalysis Today, 30(4), 223–286. doi:10.1016/0920-5861(96)00094-6.
Zornoza, E., Payá, J., & Garcés, P. (2008). Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst. Corrosion Science, 50(6), 1567–1575. doi:10.1016/j.corsci.2008.02.001.
Bayraktar, O. (2005). Bioleaching of nickel from equilibrium fluid catalytic cracking catalysts. World Journal of Microbiology and Biotechnology, 21(5), 661–665. doi:10.1007/s11274-004-3573-6.
Payá, J., Monzó, J., & Borrachero, M. V. (2001). Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cement and Concrete Research, 31(1), 57–61. doi:10.1016/S0008-8846(00)00432-4.
Chen, H. L., Tseng, Y. S., & Hsu, K. C. (2004). Spent FCC catalyst as a pozzolanic material for high-performance mortars. Cement and Concrete Composites, 26(6), 657–664. doi:10.1016/S0958-9465(03)00048-9.
Su, N., Chen, Z. H., & Fang, H. Y. (2001). Reuse of spent catalyst as fine aggregate in cement mortar. Cement and Concrete Composites, 23(1), 111–118. doi:10.1016/S0958-9465(00)00074-3.
Al-Dhamri, H., & Melghit, K. (2010). Use of alumina spent catalyst and RFCC wastes from petroleum refinery to substitute bauxite in the preparation of Portland clinker. Journal of Hazardous Materials, 179(1–3), 852–859. doi:10.1016/j.jhazmat.2010.03.083.
DOI: 10.28991/CEJ-2023-09-05-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Balamurali krishnan

This work is licensed under a Creative Commons Attribution 4.0 International License.