Estimation of Soil Moisture for Different Crops Using SAR Polarimetric Data
Abstract
Doi: 10.28991/CEJ-2023-09-06-08
Full Text: PDF
Keywords
References
Baghdadi, N., Holah, N., & Zribi, M. (2006). Soil moisture estimation using multi-incidence and multi-polarization ASAR data. International Journal of Remote Sensing, 27(10), 1907–1920. doi:10.1080/01431160500239032.
Das, K., & Paul, P. K. (2015). Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India. Egyptian Journal of Remote Sensing and Space Science, 18(2), 297–310. doi:10.1016/j.ejrs.2015.09.004.
Baghdadi, N., Choker, M., Zribi, M., El Hajj, M., Paloscia, S., Verhoest, N. E. C., Lievens, H., Baup, F., & Mattia, F. (2016). A new empirical model for radar scattering from bare soil surfaces. Remote Sensing, 8(11), 920. doi:10.3390/rs8110920.
Santi, E., Paloscia, S., Pettinato, S., Notarnicola, C., Pasolli, L., & Pistocchi, A. (2013). Comparison between SAR soil moisture estimates and hydrological model simulations over the Scrivia test site. Remote Sensing, 5(10), 4961–4976. doi:10.3390/rs5104961.
Tao, L., Wang, G., Chen, X., Li, J., & Cai, Q. (2019). Estimation of soil moisture using a vegetation scattering model in wheat fields. Journal of Applied Remote Sensing, 13(04), 1. doi:10.1117/1.jrs.13.4.044503.
Song, K., Zhou, X., & Fan, Y. (2010). Retrieval of Soil Moisture Content from Microwave Backscattering Using a Modified IEM Model. Progress In Electromagnetics Research B, 26, 383–399. doi:10.2528/pierb10072905.
Sahadevan, D. K., Rao, S. S., & Pandey, A. K. (2019). Soil Moisture Monitoring with Dual-Incidence-Angle RISAT-1 Data: A Pilot Study from Vidarbha Region. Journal of the Indian Society of Remote Sensing, 47(9), 1497–1506. doi:10.1007/s12524-019-00998-4.
Sanli, F. B., Kurucu, Y., Esetlili, M. T., & Abdikan, S. (2008). Soil moisture estimation from RADARSAT-1, ASAR and PALSAR data in agricultural fields of Menemen plane of western Turkey. International Society for Photogrammetry and Remote Sensing, 37, 75-81.
Jackson, T. J., Schugge, T. J., Nicks, A. D., Coleman, G. A., & Engman, E. T. (1981). Soil moisture updating and microwave remote sensing for hydrological simulation. Hydrological Sciences Bulletin, 26(3), 305–319. doi:10.1080/02626668109490889.
Oh, Y., Sarabandi, K., & Ulaby, F. T. (2002). Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1348–1355. doi:10.1109/TGRS.2002.800232.
Srinivasa Rao, S., Dinesh kumar, S., Das, S. N., Nagaraju, M. S. S., Venugopal, M. V., Rajankar, P., Laghate, P., Reddy, M. S., Joshi, A. K., & Sharma, J. R. (2013). Modified Dubois Model for Estimating Soil Moisture with Dual Polarized SAR Data. Journal of the Indian Society of Remote Sensing, 41(4), 865–872. doi:10.1007/s12524-013-0274-3.
Thanabalan, P., & Vidhya, R. (2018). Derivation of soil moisture using modified Dubois model with field assisted surface roughness on RISAT-1 data. Earth Sciences Research Journal, 22(1), 13–18. doi:10.15446/esrj.v22n1.59972.
Mirsoleimani, H. R., Sahebi, M. R., Baghdadi, N., & El Hajj, M. (2019). Bare soil surface moisture retrieval from sentinel-1 SAR data based on the calibrated IEM and dubois models using neural networks. Sensors (Switzerland), 19(14), 3209. doi:10.3390/s19143209.
Collingwood, A., Charbonneau, F., Shang, C., & Treitz, P. (2018). Spatiotemporal variability of arctic soil moisture detected from high-resolution RADARSAT-2 SAR Data. Advances in Meteorology, 2018, 1–17. doi:10.1155/2018/5712046.
Said, S., Kothyari, U. C., & Arora, M. K. (2008). ANN-Based Soil Moisture Retrieval over Bare and Vegetated Areas Using ERS-2 SAR Data. Journal of Hydrologic Engineering, 13(6), 461–475. doi:10.1061/(asce)1084-0699(2008)13:6(461).
Gopal, S., & Woodcock, C. (1996). Remote sensing of forest change using artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 398–404. doi:10.1109/36.485117.
Angiuli, E., del Frate, F., & Monerris, A. (2008). Application of Neural Networks to Soil Moisture Retrievals from L-Band Radiometric Data. IGARSS, IEEE International Geoscience and Remote Sensing Symposium. doi:10.1109/igarss.2008.4778927.
Mas, J. F., & Flores, J. J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617–663. doi:10.1080/01431160701352154.
Nijaguna, G. S., Manjunath, D. R., Abouhawwash, M., Askar, S. S., Basha, D. K., & Sengupta, J. (2023). Deep Learning-Based Improved WCM Technique for Soil Moisture Retrieval with Satellite Images. Remote Sensing, 15(8). doi:10.3390/rs15082005.
Döpper, V., Rocha, A. D., Berger, K., Gränzig, T., Verrelst, J., Kleinschmit, B., & Förster, M. (2022). Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning. International Journal of Applied Earth Observation and Geoinformation, 110, 102817. doi:10.1016/j.jag.2022.102817.
Lei, J., Yang, W., & Yang, X. (2022). Soil Moisture in a Vegetation-Covered Area Using the Improved Water Cloud Model Based on Remote Sensing. Journal of the Indian Society of Remote Sensing, 50(1), 1–11. doi:10.1007/s12524-021-01450-2.
Yahia, O., Karoui, M. S., & Guida, R. (2022). An Inversion of a Modified Water Cloud Model for Soil Moisture Content Estimation Through Sentinel-1 and Landsat-8 Remote Sensing Data. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. doi:10.1109/igarss46834.2022.9884192.
Luo, D., Wen, X., & He, P. (2023). Surface Soil Moisture Estimation Using a Neural Network Model in Bare Land and Vegetated Areas. Journal of Spectroscopy, 2023, 1–10. doi:10.1155/2023/5887177.
Neusch, T., & Sties, M. (1999). Application of the Dubois-model using experimental synthetic aperture radar data for the determination of soil moisture and surface roughness. ISPRS Journal of Photogrammetry and Remote Sensing, 54(4), 273–278. doi:10.1016/S0924-2716(99)00019-2.
Pari, P., Thirumaraiselvan, P., Ramalingam, M., & Jayalakshmi, S. (2020). A statistical model for estimation of soil moisture in paddy field using microwave satellite data. Progress In Electromagnetics Research M, 94, 155–166. doi:10.2528/PIERM20051401.
Polychronaki, A., Gitas, I. Z., Veraverbeke, S., & Debien, A. (2013). Evaluation of ALOS PALSAR imagery for burned area mapping in greece using object-based classification. Remote Sensing, 5(11), 5680–5701. doi:10.3390/rs5115680.
Wang, H., Méric, S., Allain, S., & Pottier, E. (2014). Adaptation of Oh Model for soil parameters retrieval using multi-angular RADARSAT-2 datasets. Journal of Surveying and Mapping Engineering, 2(4), 65-74.
Han, D., Liu, S., Du, Y., Xie, X., Fan, L., Lei, L., Li, Z., Yang, H., & Yang, G. (2019). Crop water content of winter wheat revealed with sentinel-1 and sentinel-2 imagery. Sensors (Switzerland), 19(18), 4013. doi:10.3390/s19184013.
Clementini, C., Pomente, A., Latini, D., Kanamaru, H., Vuolo, M. R., Heureux, A., Fujisawa, M., Schiavon, G., & Frate, F. Del. (2020). Long-term grass biomass estimation of pastures from satellite data. Remote Sensing, 12(13), 2160. doi:10.3390/rs12132160.
Ferencz, C., Bognár, P., Lichtenberger, J., Hamar, D., Tarcsai, G., Timár, G., Molnár, G., Pásztor, S., Steinbach, P., Székely, B., Ferencz, O. E., & Ferencz-Árkos, I. (2004). Crop yield estimation by satellite remote sensing. International Journal of Remote Sensing, 25(20), 4113–4149. doi:10.1080/01431160410001698870.
Kumar, K., Arora, M. K., & Hariprasad, K. S. (2016). Geostatistical analysis of soil moisture distribution in a part of Solani River catchment. Applied Water Science, 6(1), 25–34. doi:10.1007/s13201-014-0202-x.
Bai, X., & He, B. (2015). Potential of Dubois model for soil moisture retrieval in prairie areas using SAR and optical data. International Journal of Remote Sensing, 36(22), 5737–5753. doi:10.1080/01431161.2015.1103920.
Cho, S., Jeong, J., Baik, J., & Choi, M. (2020). Soil moisture estimation based on water cloud model at the mountainous area. 40th Asian Conference on Remote Sensing, ACRS 2019: 14-18 October, 2019, Daejeon, South Korea.
Bao, Y., Lin, L., Wu, S., Kwal Deng, K. A., & Petropoulos, G. P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76–85. doi:10.1016/j.jag.2018.05.026.
DOI: 10.28991/CEJ-2023-09-06-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Vasanthi Padmanabhan
This work is licensed under a Creative Commons Attribution 4.0 International License.