Behavior of Centrifuged GFRP Poles Under Lateral Deflection

Youssef A. Awad, Ahmed M. EL-Fiky, Hosam M. Elhegazy, Mahmoud G. Hasan, Ibrahim A. Yousef, Ahmed M. Ebid, Mohamed A. Khalaf

Abstract


Centrifugal-manufactured GFRP pipes are widely used today as lighting and low-power transmission poles due to their lightweight, high electrical insulation, low cost, and corrosion resistance. Despite these advantages, GFRP poles suffer high deflection problems due to their low elastic and shear moduli values. In order to overcome this disadvantage, three techniques were suggested to control the lateral deflection of the GFRP poles: an extended internal steel stub, external steel angles, and internal steel bracing bars. The main objective of this study is to determine the optimum strengthening technique to improve the serviceability of GFRP poles in terms of lateral deflection according to ASTM D4923. An experimental research program containing five full-scale GFRP poles was carried out to determine the optimum strengthening technique and the effect of connectors opening near the base and compare it to previous research. The results indicated that flexural stiffness was increased by 44%, 66%, and 38% for the extended stub, steel angles, and bracing bars, respectively. Besides that, the reduction in flexural stiffness due to connector opening was about 8%. The measured deflections showed good matching with simplified mathematical calculations, and the division was about ±10%. The external steel angle technique showed the best efficiency in Stiffness behavior.

 

Doi: 10.28991/CEJ-2023-09-06-07

Full Text: PDF


Keywords


GFRP Poles; Deflection Control; Stiffness; Improving Serviceability.

References


EL-Fiky, A. M., Awad, Y. A., Elhegazy, H. M., Hasan, M. G., Abdel-Latif, I., Ebid, A. M., & Khalaf, M. A. (2022). FRP Poles: A State-of-the-Art-Review of Manufacturing, Testing, and Modeling. Buildings, 12(8), 1–22. doi:10.3390/buildings12081085.

Zhang, L., Sun, Q., & Zheng, L. (2011). Experimental study on the durability of Glass Fiber Reinforced Polymer Pole and Tower for power transmission. Advanced Materials Research, 168–170, 1717–1724. doi:10.4028/www.scientific.net/AMR.168-170.1717.

Sheridan, R., Gilman, J. W., Busel, J. P., Hartman, D., Holmes, G., Coughlin, Kim, J.-H., … Natarajan, B. (2017). Road mapping workshop report on overcoming barriers to adoption of composites in sustainable infrastructure. National Institute of Standards and Technology, Gaithersburg, United States. doi:10.6028/NIST.SP.1218.

Si, J., Qiu, S., Feng, S., Chen, J., & Wang, Z. (2022). Experimental study on axial compression buckling of glass fiber reinforced plastics solid pole with circular cross-section. Advances in Structural Engineering, 25(4), 913–924. doi:10.1177/13694332211054226.

Broniewicz, M., Broniewicz, F., & Broniewicz, E. (2021). A full-scale experimental investigation of utility poles made of glass fibre reinforced polymer. Materials, 14(23). doi:10.3390/ma14237398.

Soni, S. K. (2020). Madan Mohan Malaviya University of Technology, North Dakota State University, Institute of Electrical and Electronics Engineers. Uttar Pradesh Section, IEEE Industry Applications Society, & Institute of Electrical and Electronics Engineers. ICE3-2020: International Conference on Electrical and Electronics Engineering, 14-15 February, 2020.

Siringoringo, D. M., Fujino, Y., Nagasaki, A., & Matsubara, T. (2021). Seismic performance evaluation of existing light poles on elevated highway bridges. Structure and Infrastructure Engineering, 17(5), 649–663. doi:10.1080/15732479.2020.1760894.

GangaRao, H. (2017). Infrastructure Applications of Fiber-Reinforced Polymer Composites. Applied Plastics Engineering Handbook, 675–695, William Andrew, Norwich, United Kingdom. doi:10.1016/b978-0-323-39040-8.00032-8.

Fouad, F. H., & Mullinax, Jr., E. C. (2000). FRC Poles for Distribution Power Lines. Advanced Technology in Structural Engineering. doi:10.1061/40492(2000)179.

Desai, N., & Yuan, R. (2006). Investigation of Bending/Buckling Characteristics for FRP Composite Poles. Earth & Space 2006. doi:10.1061/40830(188)146.

Ibrahim, S., & Polyzois, D. (1999). Ovalization analysis of fiber-reinforced plastic poles. Composite Structures, 45(1), 7–12. doi:10.1016/s0263-8223(98)00137-8.

Polyzois, D., Ibrahim, S., Burachynsky, V., & Hassan, S. K. (1999). Glass fiber-reinforced plastic poles for transmission and distribution lines: an experimental investigation. 12th International Conference on Composite Materials (ICCM-12), 5-9 July, 1999, Paris, France.

Alshurafa, S., & Polyzois, D. (2018). Design recommendations and comparative study of FRP and steel guyed towers. Engineering Science and Technology, an International Journal, 21(5), 807–814. doi:10.1016/j.jestch.2018.06.014.

Altanopoulos, T. I., Raftoyiannis, I. G., & Polyzois, D. (2021). Finite element method for the static behavior of tapered poles made of glass fiber reinforced polymer. Mechanics of Advanced Materials and Structures, 28(20), 2141–2150. doi:10.1080/15376494.2020.1717691.

Nawar, M. T., Kaka, M. E., El-Zohairy, A., Elhosseiny, O., & Arafa, I. T. (2022). Effect of Supporting Base System on the Flexural Behavior and Toughness of the Lighting GFRP Poles. Sustainability (Switzerland), 14(19). doi:10.3390/su141912614.

Alshurafa, S., Alhayek, H., & Polyzois, D. (2019). Finite element method for the static and dynamic analysis of FRP guyed tower. Journal of Computational Design and Engineering, 6(3), 436–446. doi:10.1016/j.jcde.2018.08.004.

Mohamed, M. H. (2021). Finite Element Modeling of CFRP Composite Pole Structures. International Journal of Engineering Applied Sciences and Technology, 6(7), 10–15. doi:10.33564/ijeast.2021.v06i07.003.

Beddu, S., Syamsir, A., Ishak, Z. A. M., Yusof, Z. M., Hudi, N. S., & Nabihah, S. (2018). Creep behavior of glass fibre reinforced polymer structures in crossarms transmission line towers. AIP Conference Proceedings, 2031. doi:10.1063/1.5066995.

Broniewicz, F. (2019). Experimental Verification of GFRP Lighting Poles. Scientific Journals of the Częstochowa University of Technology. Construction, 174(24), 30–35. doi:10.17512/znb.2018.1.05. (In Polish).

Vito, D. Di, Kanerva, M., Järveläinen, J., Laitinen, A., Pärnänen, T., Saari, K., Kukko, K., Hämmäinen, H., & Vuorinen, V. (2020). Safe and sustainable design of composite smart poles for wireless technologies. Applied Sciences (Switzerland), 10(21), 1–19. doi:10.3390/app10217594.

Skender, A., Domitran, Z., & Krokar, J. (2020). The effective flexural modulus of filament wound grp tapered poles. Tehnicki Vjesnik, 27(6), 1894–1903. doi:10.17559/TV-20191108160438.

ASTM D4923-01. (2010). Standard Specification for Reinforced Thermosetting Plastic Poles. ASTM International, Pennsylvania, United States.

Abdelkarim, O. I., Guerrero, J. M., Mohamed, H. M., & Benmokrane, B. (2019). Behaviour of Pultruded Glass Fibre-Reinforced Polymer Utility Poles Under Lateral Loads. Proceedings of the CSCE Annual Conference, 12-15 June, 2019, Montreal, Canada.

US20100148408A1. (2009). 25-2010 Method of manufacturing a fiber reinforced plastic (FRP) lighting pole. United States Patent and Trademark Office, Alexandria, United States.

Polyzois, D., Raftoyiannis, I. G., & Ibrahim, S. (1998). Finite elements method for the dynamic analysis of tapered composite poles. Composite Structures, 43(1), 25–34. doi:10.1016/s0263-8223(98)00088-9.

Ghugal, Y. M., & Sharma, R. (2011). A refined shear deformation theory for exure of thick beams. Latin American Journal of Solids and Structures, 8(2), 183–195. doi:10.1590/S1679-78252011000200005.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-06-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Youssef Ahmed Awad, Ahmed M. EL-Fiky, Hosam Mostafa Elhegazy, Mahmoud Galal Hasan, Ibrahim Abdel-Latif Yousef, Ahmed M. Ebid, Mohamed A. Khalaf

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message