Experimental and Analytical Study on Postfire Reinforced Concrete Beams Retrofitted with CFRP in Flexure and Shear

Vu Nguyen Nguyen, Vui Van Cao

Abstract


In this study, experiments were performed on carbon fiber reinforced polymer (CFRP) retrofitted postfire reinforced concrete (RC) beams, followed by theoretical analyzes. Experiments were conducted on eleven RC beams, which were exposed to different fire durations and retrofitted with CFRP in flexure and shear. The experimental results indicated that fire shifted the flexure failure to the flexure-shear failure of postfire RC beams. CFRP retrofitted postfire RC beams experienced progressive peeling-off failure. FRP retrofitting significantly increased the yield deflection by 58.2−97.3% but decreased the ultimate deflection by 43.0−55.5% compared with that of the control beam. Consequently, the ductility was reduced by 69.7−74.7%, categorized as low ductility. CFRP retrofitting successfully increased the strengths of 30-min postfire beams by up to 23.1% higher than those of the control beam. Fire significantly decreased the stiffness of postfire beams by 46.4−49.2% compared with that of the control beam, whereas CFRP retrofitting did not fully recover the stiffness of postfire beams. Finally, a simple model of the moment capacity of postfire beams without/with CFRP retrofits was developed based on the practicability of limited data feasibly obtained from real fires. The proposed model, with its simplicity, practicability, and reasonable accuracy, can be a useful tool for structural engineers in the FRP retrofitting of postfire RC structures.

 

Doi: 10.28991/CEJ-2023-09-07-05

Full Text: PDF


Keywords


Fire; CFRP; Retrofitting; Reinforced Concrete; Beam.

References


Shakib, H., Zakersalehi, M., Jahangiri, V., & Zamanian, R. (2020). Evaluation of PLASCO Building fire-induced progressive collapse. Structures, 28, 205–224. doi:10.1016/j.istruc.2020.08.058.

Ada, M., Sevim, B., Yüzer, N., & Ayvaz, Y. (2018). Assessment of damages on a RC building after a big fire. Advances in Concrete Construction, 6(2), 177–197. doi:10.12989/acc.2018.6.2.177.

Behnam, B. (2019). Fire Structural Response of the Plasco Building: A Preliminary Investigation Report. International Journal of Civil Engineering, 17(5), 563–580. doi:10.1007/s40999-018-0332-x.

Ahmadi, M. T., Aghakouchak, A. A., Mirghaderi, R., Tahouni, S., Garivani, S., Shahmari, A., & Epackachi, S. (2020). Collapse of the 16-Story PLASCO Building in Tehran due to Fire. Fire Technology, 56(2), 769–799. doi:10.1007/s10694-019-00903-y.

Saadatmanesh, H., Ehsani, M. R., & Jin, L. (1997). Repair of earthquake-damaged RC columns with FRP wraps. ACI Structural Journal, 94(2), 206–X. doi:10.14359/474.

Van Cao, V., & Pham, S. Q. (2019). Comparison of CFRP and GFRP Wraps on Reducing Seismic Damage of Deficient Reinforced Concrete Structures. International Journal of Civil Engineering, 17(11), 1667–1681. doi:10.1007/s40999-019-00429-y.

ACI 440.2R-17. (2017). Guide for the design and construction of externally bonded FRP systems for strengthening concrete American Concrete Institute (ACI), Michigan, United States.

Lam, L., & Teng, J. G. (2003). Design-oriented stress–strain model for FRP-confined concrete. Construction and Building Materials, 17(6–7), 471–489. doi:10.1016/s0950-0618(03)00045-x.

Zeng, J. J., Lin, G., Teng, J. G., & Li, L. J. (2018). Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Engineering Structures, 174, 629–645. doi:10.1016/j.engstruct.2018.07.086.

Shayanfar, J., Kafshgarkolaei, H. J., Barros, J. A. O., & Rezazadeh, M. (2023). Unified strength model for FRP confined heat-damaged circular and square concrete columns. Composite Structures, 307(116647). doi:10.1016/j.compstruct.2022.116647.

Ibrahim, M., Wakjira, T., & Ebead, U. (2020). Shear strengthening of reinforced concrete deep beams using near-surface mounted hybrid carbon/glass fibre reinforced polymer strips. Engineering Structures, 210, 110412. doi:10.1016/j.engstruct.2020.110412.

Zhang, S. S., Jedrzejko, M. J., Ke, Y., Yu, T., & Nie, X. F. (2023). Shear strengthening of RC beams with NSM FRP strips: Concept and behavior of novel FRP anchors. Composite Structures, 312(116790). doi:10.1016/j.compstruct.2023.116790.

Godat, A., Hammad, F., & Chaallal, O. (2020). State-of-the-art review of anchored FRP shear-strengthened RC beams: A study of influencing factors. Composite Structures, 254, 112767. doi:10.1016/j.compstruct.2020.112767.

Zhang, S. S., Ke, Y., Smith, S. T., Zhu, H. P., & Wang, Z. L. (2021). Effect of FRP U-jackets on the behavior of RC beams strengthened in flexure with NSM CFRP strips. Composite Structures, 256(113095). doi:10.1016/j.compstruct.2020.113095.

Jacobs, R. R., & Williams, C. S. (2023). Evaluation of flexural strengthening methods for beams with simulated deterioration using spike-anchored FRP externally bonded sheets and near-surface-mounted strips. Composite Structures, 305, 116463. doi:10.1016/j.compstruct.2022.116463.

Norris, T., Saadatmanesh, H., & Ehsani, M. R. (1997). Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets. Journal of Structural Engineering, 123(7), 903–911. doi:10.1061/(asce)0733-9445(1997)123:7(903).

Lao, X., Han, X., Ji, J., & Chen, B. (2019). The compression behavior of CFRP-repaired damaged square RC columns. Construction and Building Materials, 223, 1154–1166. doi:10.1016/j.conbuildmat.2019.07.182.

Ozcan, O., Binici, B., Canbay, E., & Ozcebe, G. (2010). Repair and strengthening of reinforced concrete columns with CFRPs. Journal of Reinforced Plastics and Composites, 29(22), 3411–3424. doi:10.1177/0731684410376332.

Balsamo, A., Colombo, A., Manfredi, G., Negro, P., & Prota, A. (2005). Seismic behavior of a full-scale RC frame repaired using CFRP laminates. Engineering Structures, 27(5), 769–780. doi:10.1016/j.engstruct.2005.01.002.

Ahmad, H., Hameed, R., Riaz, M. R., & Gillani, A. A. (2018). Strengthening of concrete damaged by mechanical loading and elevated temperature. Advances in Concrete Construction, 6(6), 645–658. doi:10.12989/acc.2018.6.6.645.

Sharif, A., Al-Sulaimani, G. J., Basunbul, I. A., Baluch, M. H., & Ghaleb, B. N. (1994). Strengthening of initially loaded reinforced concrete beams using FRP plates. ACI Structural Journal, 91(2), 160–168. doi:10.14359/4594.

Al-Abdwais, A. H., & Al-Mahaidi, R. S. (2020, October). Performance of reinforced concrete beams strengthened with NSM CFRP composites for flexure using cement-based adhesives. Structures, 27, 1446-1457. doi:10.1016/j.istruc.2020.07.047.

Al-Mahmoud, F., Castel, A., & François, R. (2012). Failure modes and failure mechanisms of RC members strengthened by NSM CFRP composites–Analysis of pull-out failure mode. Composites Part B: Engineering, 43(4), 1893-1901. doi:10.1016/j.compositesb.2012.01.020.

Ke, Y., Zhang, S. S., Nie, X. F., Yu, T., Yang, Y. M., & Jedrzejko, M. J. (2022). Finite element modelling of RC beams strengthened in flexure with NSM FRP and anchored with FRP U-jackets. Composite Structures, 282, 115104. doi:10.1016/j.compstruct.2021.115104.

Zolfaghari, S., Mostofinejad, D., Fantuzzi, N., Luciano, R., & Fabbrocino, F. (2023). Experimental evaluation of FRP-concrete bond using externally-bonded reinforcement on grooves (EBROG) method. Composite Structures, 310, 116693. doi:10.1016/j.compstruct.2023.116693.

Sanginabadi, K., Yazdani, A., Mostofinejad, D., & Czaderski, C. (2022). Bond behavior of FRP composites attached to concrete using EBROG method: A state-of-the-art review. Composite Structures, 299, 116060. doi:10.1016/j.compstruct.2022.116060.

Arduini, M., & Nanni, A. (1997). Behavior of Precracked RC Beams Strengthened with Carbon FRP Sheets. Journal of Composites for Construction, 1(2), 63–70. doi:10.1061/(asce)1090-0268(1997)1:2(63).

Spadea, G., Bencardino, F., & Swamy, R. N. (1998). Structural Behavior of Composite RC Beams with Externally Bonded CFRP. Journal of Composites for Construction, 2(3), 132–137. doi:10.1061/(asce)1090-0268(1998)2:3(132).

Buyukozturk, O., & Hearing, B. (1998). Failure Behavior of Precracked Concrete Beams Retrofitted with FRP. Journal of Composites for Construction, 2(3), 138–144. doi:10.1061/(asce)1090-0268(1998)2:3(138).

Bonacci, J. F., & Maalej, M. (2000). Externally bonded fiber-reinforced polymer for rehabilitation of corrosion damaged concrete beams. ACI Structural Journal, 97(5), 703–711. doi:10.14359/8805.

Al-Saidy, A. H., Al-Harthy, A. S., Al-Jabri, K. S., Abdul-Halim, M., & Al-Shidi, N. M. (2010). Structural performance of corroded RC beams repaired with CFRP sheets. Composite Structures, 92(8), 1931–1938. doi:10.1016/j.compstruct.2010.01.001.

Bonacci, J. F., & Maalej, M. (2001). Behavioral Trends of RC Beams Strengthened with Externally Bonded FRP. Journal of Composites for Construction, 5(2), 102–113. doi:10.1061/(asce)1090-0268(2001)5:2(102).

Rahimi, H., & Hutchinson, A. (2001). Concrete Beams Strengthened with Externally Bonded FRP Plates. Journal of Composites for Construction, 5(1), 44–56. doi:10.1061/(asce)1090-0268(2001)5:1(44).

White, T. W., Soudki, K. A., & Erki, M.-A. (2001). Response of RC Beams Strengthened with CFRP Laminates and Subjected to a High Rate of Loading. Journal of Composites for Construction, 5(3), 153–162. doi:10.1061/(asce)1090-0268(2001)5:3(153).

Malek, A. M., & Patel, K. (2002). Flexural Strengthening of Reinforced Concrete Flanged Beams with Composite Laminates. Journal of Composites for Construction, 6(2), 97–103. doi:10.1061/(asce)1090-0268(2002)6:2(97).

Benjeddou, O., Ouezdou, M. B., & Bedday, A. (2007). Damaged RC beams repaired by bonding of CFRP laminates. Construction and Building Materials, 21(6), 1301–1310. doi:10.1016/j.conbuildmat.2006.01.008.

Jeevan, N., & Jagannatha Reddy, H. N. (2018). Strengthening of RC beams using externally bonded laminate (EBL) technique with end anchorages under flexure. Asian Journal of Civil Engineering, 19(3), 263–272. doi:10.1007/s42107-018-0022-7.

Al-Ghrery, K., Al-Mahaidi, R., Kalfat, R., Oukaili, N., & Al-Mosawe, A. (2022). Externally Bonded CFRP for Flexural Strengthening of RC Beams with Different Levels of Soffit Curvature. Journal of Composites for Construction, 26(1), 1176. doi:10.1061/(asce)cc.1943-5614.0001176.

Choi, K. S., Lee, D., You, Y. C., & Whan Han, S. (2022). Long-term performance of 15-year-old full-scale RC beams strengthened with EB FRP composites. Composite Structures, 299, 116055. doi:10.1016/j.compstruct.2022.116055.

Li, G., Zhang, A., Jin, W., Xiao, Y., & Li, H. (2023). A new flexural strength model of CFRP-strengthened RC beams with intermediate crack induced debonding failure. Composite Structures, 308, 116681. doi:10.1016/j.compstruct.2023.116681.

Fayyadh, M. M., & Razak, H. A. (2021). Externally bonded FRP applications in RC structures: A state-of-the-art review. Jordan Journal of Civil Engineering, 15(2), 157–179.

Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01189.

Liu, F., Wu, B., & Wei, D. (2009). Failure modes of reinforced concrete beams strengthened with carbon fiber sheet in fire. Fire Safety Journal, 44(7), 941–950. doi:10.1016/j.firesaf.2009.05.006.

Ahmed, A., & Kodur, V. (2011). The experimental behavior of FRP-strengthened RC beams subjected to design fire exposure. Engineering Structures, 33(7), 2201–2211. doi:10.1016/j.engstruct.2011.03.010.

Yu, B., & Kodur, V. K. R. (2014). Fire behavior of concrete T-beams strengthened with near-surface mounted FRP reinforcement. Engineering Structures, 80, 350–361. doi:10.1016/j.engstruct.2014.09.003.

Jiangtao, Y., Yichao, W., Kexu, H., Kequan, Y., & Jianzhuang, X. (2017). The performance of near-surface mounted CFRP strengthened RC beam in fire. Fire Safety Journal, 90, 86–94. doi:10.1016/j.firesaf.2017.04.031.

Truong, G. T., Lee, H. H., & Choi, K. K. (2018). Flexural behavior of RC beams strengthened with NSM GFRP strips after exposed to high temperatures. Engineering Structures, 173, 203–215. doi:10.1016/j.engstruct.2018.06.110.

Nguyen, V. N., & Van Cao, V. (2023). NSM GFRP Strengthening of Reinforced Concrete Beams after Exposure to Fire: Experiments and Theoretical Model. Journal of Composites for Construction, 27(1), 04022086. doi:10.1061/jccof2.cceng-3933.

ASCE/SEI 41-17. (2017). Seismic Evaluation and retrofit of existing Buildings. American Society of Civil Engineers (ASCE), Reston, United States.

Wickström, U. (1986). A very simple method for estimating temperature in fire exposed concrete structures. Fire Technology, Technical Report, Statens Provningsanst, Boras, Sweden.

Purkiss, J. A., & Li, L. Y. (2013). Fire safety engineering design of structures (3rd Ed.). CRC Press Taylor & Francis, Boca Raton, United States. doi:10.1201/b16059.

Eamon, C. D., & Jensen, E. (2012). Reliability analysis of prestressed concrete beams exposed to fire. Engineering Structures, 43, 69–77. doi:10.1016/j.engstruct.2012.05.016.

ACI 318-19. (2019). Building code requirements for structural concrete. American Concrete Institute (ACI), Michigan, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Vu Nguyen Nguyen, Vui Van Cao

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message