River Mobile Armor Layer Induced by Flood

Arlendenovega S. Negara, Cahyono Ikhsan, RR. Rintis Hadiani, Yusep M. Purwana


The armored layer is crucial for protecting the riverbed. The bed layer of the river is a movable material that protects the material below the surface layer. This study aimed to develop formulas to estimate the thickness of a mobile armor layer with noncohesive materials and establish a correlation between the flow velocity and shear stress under conditions of erosion and sedimentation. The research methods included field measurements, laboratory tests, and numerical simulations. The primary data included grain size gradation profiles, river topography, and flood discharge. The results demonstrated consistency in the behavior of the riverbed under various flood discharge conditions. The fundamental variables affecting the mobile armor thickness included the gradation coefficient (sv) and the dimensionless shear stress (t0/tc). The fundamental novelty of this study is the derivation of the mobile armor layer thickness, which is influenced by grain size and shear stress. The present findings significantly contribute to the design of more efficient and environmentally friendly riverbed protection rather than rigid structures. These results indicated that erosion and sedimentation were primarily influenced by the flow velocity and the applied shear stress above the riverbed.


Doi: 10.28991/CEJ-2023-09-06-05

Full Text: PDF


Armor Layer; Shear Stress; Grain Size; Bed Load; River.


Cooper, J. R., & Tait, S. J. (2009). Water-worked gravel beds in laboratory flumes - A natural analogue? Earth Surface Processes and Landforms, 34(3), 384–397. doi:10.1002/esp.1743.

Yager, E. M., Kenworthy, M., & Monsalve, A. (2015). Taking the river inside: Fundamental advances from laboratory experiments in measuring and understanding bedload transport processes. Geomorphology, 244, 21–32. doi:10.1016/j.geomorph.2015.04.002.

Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, D. (2021). Laboratory study on the evolution of gravel-bed surfaces in bed armoring processes. Journal of Hydrology, 597, 125751. doi:10.1016/j.jhydrol.2020.125751.

Hunziker, R. P., & Jaeggi, M. N. R. (2002). Grain Sorting Processes. Journal of Hydraulic Engineering, 128(12), 1060–1068. doi:10.1061/(asce)0733-9429(2002)128:12(1060).

Marion, A., & Fraccarollo, L. (1997). Experimental investigation of mobile armoring development. Water Resources Research, 33(6), 1447–1453. doi:10.1029/97WR00705.

Ikhsan, C., Permana, A. S., & Negara, A. S. (2022). Armor Layer Uniformity and Thickness in Stationary Conditions with Steady Uniform Flow. Civil Engineering Journal (Iran), 8(6), 1086–1099. doi:10.28991/CEJ-2022-08-06-01.

Pasternack, G. B. (2010). Gravel/Cobble Augmentation Implementation Plan (GAIP) for the Englebright Dam Reach of the Lower Yuba River, CA. US Army Corps of Engineers, Washington, United States.

Tranmer, A. W., Caamaño, D., Clayton, S. R., Giglou, A. N., Goodwin, P., Buffington, J. M., & Tonina, D. (2022). Testing the effective-discharge paradigm in gravel-bed river restoration. Geomorphology, 403. doi:10.1016/j.geomorph.2022.108139.

Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armor ratio. Earth-Science Reviews, 207(November 2019), 103211. doi:10.1016/j.earscirev.2020.103211.

Chin, C. O., Melville, B. W., & Raudkivi, A. J. (1994). Streambed armoring. Journal of Hydraulic Engineering, 120(8), 899-918. doi:10.1061/(ASCE)0733-9429(1994)120:8(899).

Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of armor layers in gravel-bed streams. Geophysical Research Letters, 32(8), 1–4. doi:10.1029/2004GL021772.

Mrokowska, M. M., & Rowinski, P. M. (2019). Impact of unsteady flow events on bedload transport: A review of laboratory experiments. Water (Switzerland), 11(5). doi:10.3390/w11050907.

Koll, K., Koll, K., & Dittrich, A. (2010). Sediment transport over static armor layers and its impact on bed stability. River Flow 2010, 929-936.

Ikhsan, C., Rahajo, A., & Legono, D. (2014). The formation of static armor layer. International Journal of Civil & Environmental Engineering, 14, 19-23.

Curran, J. C., & Waters, K. A. (2014). The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river. Journal of Geophysical Research: Earth Surface, 119(7), 1484–1497. doi:10.1002/2014JF003143.

Parker, G., Klingeman, P. C., & McLean, D. G. (1982). Bedload and size distribution in paved gravel-bed streams. Journal of the Hydraulics Division - ASCE, 108(HY4), 544–571. doi:10.1061/jyceaj.0005854.

Orrú, C., Blom, A., & Uijttewaal, W. S. J. (2016). Armor breakup and reformation in a degradational laboratory experiment. Earth Surface Dynamics, 4(2), 461–470. doi:10.5194/esurf-4-461-2016.

Mao, L., Cooper, J. R., & Frostick, L. E. (2011). Grain size and topographical differences between static and mobile armor layers. Earth Surface Processes and Landforms, 36(10), 1321–1334. doi:10.1002/esp.2156.

Powell, D. M., Ockelford, A., Rice, S. P., Hillier, J. K., Nguyen, T., Reid, I., Tate, N. J., & Ackerley, D. (2016). Structural properties of mobile armors formed at different flow strengths in gravel-bed rivers. Journal of Geophysical Research: Earth Surface, 121(8), 1494–1515. doi:10.1002/2015JF003794.

Vericat, D., Batalla, R. J., & Garcia, C. (2006). Breakup and reestablishment of the armor layer in a large gravel-bed river below dams: The lower Ebro. Geomorphology, 76(1–2), 122–136. doi:10.1016/j.geomorph.2005.10.005.

Plumb, B. D., Juez, C., Annable, W. K., McKie, C. W., & Franca, M. J. (2020). The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume. Earth Surface Processes and Landforms, 45(4), 816–830. doi:10.1002/esp.4770.

Hassan, M. A., Egozi, R., & Parker, G. (2006). Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resources Research, 42(9). doi:10.1029/2005WR004707.

Marion, A., Tait, S. J., & McEwan, I. K. (2003). Analysis of small-scale gravel bed topography during armoring. Water Resources Research, 39(12). doi:10.1029/2003WR002367.

Heays, K. G., Friedrich, H., & Melville, B. W. (2014). Laboratory study of gravel-bed cluster formation and disintegration. Water Resources Research, 50(3), 2227–2241. doi:10.1002/2013WR014208.

Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, D. (2021). Laboratory study on the evolution of gravel-bed surfaces in bed armoring processes. Journal of Hydrology, 597(October 2020). doi:10.1016/j.jhydrol.2020.125751.

Elgueta-Astaburuaga, M. A., & Hassan, M. A. (2019). Sediment storage, partial transport, and the evolution of an experimental gravel bed under changing sediment supply regimes. Geomorphology, 330, 1–12. doi:10.1016/j.geomorph.2018.12.018.

Lisle, T. E., & Madej, M. A. (1992). Spatial variation in armoring in a channel with high sediment supply. Dynamics of gravel-bed rivers, 277-293, John Wiley and Sons, Hoboken, United States.

Berni, C., Perret, E., & Camenen, B. (2018). Characteristic time of sediment transport decrease in static armor formation. Geomorphology, 317, 1–9. doi:10.1016/j.geomorph.2018.04.004.

Bertin, S., & Friedrich, H. (2018). Effect of surface texture and structure on the development of stable fluvial armors. Geomorphology, 306, 64–79. doi:10.1016/j.geomorph.2018.01.013.

Venditti, J. G., Dietrich, W. E., Nelson, P. A., Wydzga, M. A., Fadde, J., & Sklar, L. (2010). Mobilization of coarse surface layers in gravel-bedded rivers by finer gravel bed load. Water Resources Research, 46(7), 1–10. doi:10.1029/2009WR008329.

Viparelli, E., Gaeuman, D., Wilcock, P., & Parker, G. (2011). A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River. Water Resources Research, 47(2). doi:10.1029/2010WR009164.

Wilcock, P. R., Kenworthy, S. T., & Crowe, J. C. (2001). Experimental study of the transport of mixed sand and gravel. Water Resources Research, 37(12), 3349–3358. doi:10.1029/2001WR000683.

Butler, D., May, R., & Ackers, J. (2003). Self-cleansing sewer design based on sediment transport principles. Journal of Hydraulic Engineering, 129(4), 276-282. doi:10.1061/(ASCE)0733-9429(2003)129.

Das, B. M. (2019). Advanced soil mechanics. CRC Press, London, United Kingdom. doi:10.1201/9781351215183.

Islam, M. A., Badhon, F. F., & Abedin, M. Z. (2017). Relation between Effective Particle Size and Angle of Internal Friction of Cohesionless Soil. Proceedings from International Conference on Planning, Architecture and Civil Engineering, RUET, 9-11 February, 2017, Rajshahi, Bangladesh.

Hamidi, A., Azini, E., & Masoudi, B. (2012). Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures. Scientia Iranica, 19(3), 393–402. doi:10.1016/j.scient.2012.04.002.

Triatmodjo, B. (2015). Applied Hydrology (5th Ed.). Beta Offset Yogyakarta, Yogyakarta, Indonesia. (In Indonesian).

Technical Supplement 13A. (2007). Guidelines for Sampling Bed Material. Part 654, National Engineering Handbook, United States Department of Agriculture, Washington, United States.

Melville, B. W. (1999). Book Review: Fluvial Hydraulics: Flow and Transport Process in Channels of Simple Geometry. Journal of Hydraulic Engineering, 125(10), 1109–1110. doi:10.1061/(asce)0733-9429(1999)125:10(1109).

López, R., Vericat, D., & Batalla, R. J. (2014). Evaluation of bed load transport formulae in a large regulated gravel bed river: The lower Ebro (NE Iberian Peninsula). Journal of Hydrology, 510, 164–181. doi:10.1016/j.jhydrol.2013.12.014.

HEC-RAS. (2021). River Analysis System Hydraulic Reference Manual. Hydrological Engineering Center, US Army Corps of Engineering, Washington, United States.

HEC-RAS. (2021). River Analysis System Hydraulic Reference Manual. Hydrological Engineering Center, US Army Corps of Engineering, Washington, United States.

Shatnawi, A., & Ibrahim, M. (2022). Derivation of flood hydrographs using SCS synthetic unit hydrograph technique for Housha catchment area. Water Supply, 22(5), 4888–4901. doi:10.2166/ws.2022.169.

Cordier, F., Tassi, P., Claude, N., van Bang, D. P., Crosato, A., & Rodrigues, S. (2016). Numerical modelling of graded sediment transport based on the experiments of Wilcock and Crowe (2003). Proceedings of the XXIIIrd TELEMAC-MASCARET User Conference 2016, 11-13 October, 2016, Paris, France.

Bettess, R., & Frangipane, A. (2003). A one-layer model to predict the time development of static armor. Journal of Hydraulic Research, 41(2), 179–194. doi:10.1080/00221680309499960.

Almasalmeh, O., Saleh, A. A., & Mourad, K. A. (2021). Soil erosion and sediment transport modelling using hydrological models and remote sensing techniques in Wadi Billi, Egypt. Modeling Earth Systems and Environment, 8(1), 1215–1226. doi:10.1007/s40808-021-01144-1.

Naderi, M., Afzalimehr, H., Dehghan, A., Darban, N., Nazari-Sharabian, M., & Karakouzian, M. (2022). Field Study of Three–Parameter Flow Resistance Model in Rivers with Vegetation Patch. Fluids, 7(8), 284. doi:10.3390/fluids7080284.

Ohsumi Work Office. (1988). Debris Flow at Sakurajima. Ohsumi Work Office, Kyushu Regional Construction Bureau, Ministry of Construction, Tokyo, Japan.

Hirano, M., Hashimoto, H., Kouno, M., Onda, K., & Park, K. (1999). Field Measurements of Debris Flows in the Mizunashi and Nakao Rivers on Mt Unzen-Hugen Dake. Doboku Gakkai Ronbunshu, 1999(635), 49–65. doi:10.2208/jscej.1999.635_49.

Takahashi, T. (2009). A Review of Japanese Debris Flow Research. International Journal of Erosion Control Engineering, 2(1), 1–14. doi:10.13101/ijece.2.1.

Pandey, M., Chen, S. C., Sharma, P. K., Ojha, C. S. P., & Kumar, V. (2019). Local scour of armor layer processes around the circular pier in non-uniform gravel bed. Water (Switzerland), 11(7), 1–10. doi:10.3390/w11071421.

Jobson, H. E., & Froehlich, D. C. (1987). Basic principles of open channel hydraulics. Developments in Water Science, Elsevier, Amsterdam, Netherlands. doi:10.1016/S0167-5648(08)70006-6.

Negara, A. S., Ikhsan, C., Hadiani, R. R., & Yusep, M. (2022). Effect of bed shear stress on the mobile armor layer at the riverbed. In The 8th International Conference of EACEF 2022, Switzerland.

United States department of Agriculture. (2012). Chapter 3 Engineering Classification of Earth Materials. Part 631 National Engineering Handbook, Natural Resources Conservation Service, United States Department of Agriculture, Washington, United States.

Yunatci, A. A., & Çetın, K. Ö. (2022). Large Scale Direct Shear Box Tests on Gravels. Teknik Dergi / Technical Journal of Turkish Chamber of Civil Engineers, 33(1), 11617–11623. doi:10.18400/tekderg.606816.

Simoni, A., & Houlsby, G. T. (2006). The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering, 24(3), 523–549. doi:10.1007/s10706-004-5832-6.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-06-05


  • There are currently no refbacks.

Copyright (c) 2023 Arlendenovega Satria Negara, Cahyono Ikhsan, RR. Rintis Hadiani, Yusep Muslih Purwana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.