River Mobile Armor Layer Induced by Flood
Downloads
Doi: 10.28991/CEJ-2023-09-06-05
Full Text: PDF
Downloads
[2] Yager, E. M., Kenworthy, M., & Monsalve, A. (2015). Taking the river inside: Fundamental advances from laboratory experiments in measuring and understanding bedload transport processes. Geomorphology, 244, 21–32. doi:10.1016/j.geomorph.2015.04.002.
[3] Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, D. (2021). Laboratory study on the evolution of gravel-bed surfaces in bed armoring processes. Journal of Hydrology, 597, 125751. doi:10.1016/j.jhydrol.2020.125751.
[4] Hunziker, R. P., & Jaeggi, M. N. R. (2002). Grain Sorting Processes. Journal of Hydraulic Engineering, 128(12), 1060–1068. doi:10.1061/(asce)0733-9429(2002)128:12(1060).
[5] Marion, A., & Fraccarollo, L. (1997). Experimental investigation of mobile armoring development. Water Resources Research, 33(6), 1447–1453. doi:10.1029/97WR00705.
[6] Ikhsan, C., Permana, A. S., & Negara, A. S. (2022). Armor Layer Uniformity and Thickness in Stationary Conditions with Steady Uniform Flow. Civil Engineering Journal (Iran), 8(6), 1086–1099. doi:10.28991/CEJ-2022-08-06-01.
[7] Pasternack, G. B. (2010). Gravel/Cobble Augmentation Implementation Plan (GAIP) for the Englebright Dam Reach of the Lower Yuba River, CA. US Army Corps of Engineers, Washington, United States.
[8] Tranmer, A. W., Caamaño, D., Clayton, S. R., Giglou, A. N., Goodwin, P., Buffington, J. M., & Tonina, D. (2022). Testing the effective-discharge paradigm in gravel-bed river restoration. Geomorphology, 403. doi:10.1016/j.geomorph.2022.108139.
[9] Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armor ratio. Earth-Science Reviews, 207(November 2019), 103211. doi:10.1016/j.earscirev.2020.103211.
[10] Chin, C. O., Melville, B. W., & Raudkivi, A. J. (1994). Streambed armoring. Journal of Hydraulic Engineering, 120(8), 899-918. doi:10.1061/(ASCE)0733-9429(1994)120:8(899).
[11] Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of armor layers in gravel-bed streams. Geophysical Research Letters, 32(8), 1–4. doi:10.1029/2004GL021772.
[12] Mrokowska, M. M., & Rowinski, P. M. (2019). Impact of unsteady flow events on bedload transport: A review of laboratory experiments. Water (Switzerland), 11(5). doi:10.3390/w11050907.
[13] Koll, K., Koll, K., & Dittrich, A. (2010). Sediment transport over static armor layers and its impact on bed stability. River Flow 2010, 929-936.
[14] Ikhsan, C., Rahajo, A., & Legono, D. (2014). The formation of static armor layer. International Journal of Civil & Environmental Engineering, 14, 19-23.
[15] Curran, J. C., & Waters, K. A. (2014). The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river. Journal of Geophysical Research: Earth Surface, 119(7), 1484–1497. doi:10.1002/2014JF003143.
[16] Parker, G., Klingeman, P. C., & McLean, D. G. (1982). Bedload and size distribution in paved gravel-bed streams. Journal of the Hydraulics Division - ASCE, 108(HY4), 544–571. doi:10.1061/jyceaj.0005854.
[17] Orrú, C., Blom, A., & Uijttewaal, W. S. J. (2016). Armor breakup and reformation in a degradational laboratory experiment. Earth Surface Dynamics, 4(2), 461–470. doi:10.5194/esurf-4-461-2016.
[18] Mao, L., Cooper, J. R., & Frostick, L. E. (2011). Grain size and topographical differences between static and mobile armor layers. Earth Surface Processes and Landforms, 36(10), 1321–1334. doi:10.1002/esp.2156.
[19] Powell, D. M., Ockelford, A., Rice, S. P., Hillier, J. K., Nguyen, T., Reid, I., Tate, N. J., & Ackerley, D. (2016). Structural properties of mobile armors formed at different flow strengths in gravel-bed rivers. Journal of Geophysical Research: Earth Surface, 121(8), 1494–1515. doi:10.1002/2015JF003794.
[20] Vericat, D., Batalla, R. J., & Garcia, C. (2006). Breakup and reestablishment of the armor layer in a large gravel-bed river below dams: The lower Ebro. Geomorphology, 76(1–2), 122–136. doi:10.1016/j.geomorph.2005.10.005.
[21] Plumb, B. D., Juez, C., Annable, W. K., McKie, C. W., & Franca, M. J. (2020). The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume. Earth Surface Processes and Landforms, 45(4), 816–830. doi:10.1002/esp.4770.
[22] Hassan, M. A., Egozi, R., & Parker, G. (2006). Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resources Research, 42(9). doi:10.1029/2005WR004707.
[23] Marion, A., Tait, S. J., & McEwan, I. K. (2003). Analysis of small-scale gravel bed topography during armoring. Water Resources Research, 39(12). doi:10.1029/2003WR002367.
[24] Heays, K. G., Friedrich, H., & Melville, B. W. (2014). Laboratory study of gravel-bed cluster formation and disintegration. Water Resources Research, 50(3), 2227–2241. doi:10.1002/2013WR014208.
[25] Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, D. (2021). Laboratory study on the evolution of gravel-bed surfaces in bed armoring processes. Journal of Hydrology, 597(October 2020). doi:10.1016/j.jhydrol.2020.125751.
[26] Elgueta-Astaburuaga, M. A., & Hassan, M. A. (2019). Sediment storage, partial transport, and the evolution of an experimental gravel bed under changing sediment supply regimes. Geomorphology, 330, 1–12. doi:10.1016/j.geomorph.2018.12.018.
[27] Lisle, T. E., & Madej, M. A. (1992). Spatial variation in armoring in a channel with high sediment supply. Dynamics of gravel-bed rivers, 277-293, John Wiley and Sons, Hoboken, United States.
[28] Berni, C., Perret, E., & Camenen, B. (2018). Characteristic time of sediment transport decrease in static armor formation. Geomorphology, 317, 1–9. doi:10.1016/j.geomorph.2018.04.004.
[29] Bertin, S., & Friedrich, H. (2018). Effect of surface texture and structure on the development of stable fluvial armors. Geomorphology, 306, 64–79. doi:10.1016/j.geomorph.2018.01.013.
[30] Venditti, J. G., Dietrich, W. E., Nelson, P. A., Wydzga, M. A., Fadde, J., & Sklar, L. (2010). Mobilization of coarse surface layers in gravel-bedded rivers by finer gravel bed load. Water Resources Research, 46(7), 1–10. doi:10.1029/2009WR008329.
[31] Viparelli, E., Gaeuman, D., Wilcock, P., & Parker, G. (2011). A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River. Water Resources Research, 47(2). doi:10.1029/2010WR009164.
[32] Wilcock, P. R., Kenworthy, S. T., & Crowe, J. C. (2001). Experimental study of the transport of mixed sand and gravel. Water Resources Research, 37(12), 3349–3358. doi:10.1029/2001WR000683.
[33] Butler, D., May, R., & Ackers, J. (2003). Self-cleansing sewer design based on sediment transport principles. Journal of Hydraulic Engineering, 129(4), 276-282. doi:10.1061/(ASCE)0733-9429(2003)129.
[34] Das, B. M. (2019). Advanced soil mechanics. CRC Press, London, United Kingdom. doi:10.1201/9781351215183.
[35] Islam, M. A., Badhon, F. F., & Abedin, M. Z. (2017). Relation between Effective Particle Size and Angle of Internal Friction of Cohesionless Soil. Proceedings from International Conference on Planning, Architecture and Civil Engineering, RUET, 9-11 February, 2017, Rajshahi, Bangladesh.
[36] Hamidi, A., Azini, E., & Masoudi, B. (2012). Impact of gradation on the shear strength-dilation behavior of well graded sand-gravel mixtures. Scientia Iranica, 19(3), 393–402. doi:10.1016/j.scient.2012.04.002.
[37] Triatmodjo, B. (2015). Applied Hydrology (5th Ed.). Beta Offset Yogyakarta, Yogyakarta, Indonesia. (In Indonesian).
[38] Technical Supplement 13A. (2007). Guidelines for Sampling Bed Material. Part 654, National Engineering Handbook, United States Department of Agriculture, Washington, United States.
[39] Melville, B. W. (1999). Book Review: Fluvial Hydraulics: Flow and Transport Process in Channels of Simple Geometry. Journal of Hydraulic Engineering, 125(10), 1109–1110. doi:10.1061/(asce)0733-9429(1999)125:10(1109).
[40] López, R., Vericat, D., & Batalla, R. J. (2014). Evaluation of bed load transport formulae in a large regulated gravel bed river: The lower Ebro (NE Iberian Peninsula). Journal of Hydrology, 510, 164–181. doi:10.1016/j.jhydrol.2013.12.014.
[41] HEC-RAS. (2021). River Analysis System Hydraulic Reference Manual. Hydrological Engineering Center, US Army Corps of Engineering, Washington, United States.
[42] HEC-RAS. (2021). River Analysis System Hydraulic Reference Manual. Hydrological Engineering Center, US Army Corps of Engineering, Washington, United States.
[43] Shatnawi, A., & Ibrahim, M. (2022). Derivation of flood hydrographs using SCS synthetic unit hydrograph technique for Housha catchment area. Water Supply, 22(5), 4888–4901. doi:10.2166/ws.2022.169.
[44] Cordier, F., Tassi, P., Claude, N., van Bang, D. P., Crosato, A., & Rodrigues, S. (2016). Numerical modelling of graded sediment transport based on the experiments of Wilcock and Crowe (2003). Proceedings of the XXIIIrd TELEMAC-MASCARET User Conference 2016, 11-13 October, 2016, Paris, France.
[45] Bettess, R., & Frangipane, A. (2003). A one-layer model to predict the time development of static armor. Journal of Hydraulic Research, 41(2), 179–194. doi:10.1080/00221680309499960.
[46] Almasalmeh, O., Saleh, A. A., & Mourad, K. A. (2021). Soil erosion and sediment transport modelling using hydrological models and remote sensing techniques in Wadi Billi, Egypt. Modeling Earth Systems and Environment, 8(1), 1215–1226. doi:10.1007/s40808-021-01144-1.
[47] Naderi, M., Afzalimehr, H., Dehghan, A., Darban, N., Nazari-Sharabian, M., & Karakouzian, M. (2022). Field Study of Three–Parameter Flow Resistance Model in Rivers with Vegetation Patch. Fluids, 7(8), 284. doi:10.3390/fluids7080284.
[48] Ohsumi Work Office. (1988). Debris Flow at Sakurajima. Ohsumi Work Office, Kyushu Regional Construction Bureau, Ministry of Construction, Tokyo, Japan.
[49] Hirano, M., Hashimoto, H., Kouno, M., Onda, K., & Park, K. (1999). Field Measurements of Debris Flows in the Mizunashi and Nakao Rivers on Mt Unzen-Hugen Dake. Doboku Gakkai Ronbunshu, 1999(635), 49–65. doi:10.2208/jscej.1999.635_49.
[50] Takahashi, T. (2009). A Review of Japanese Debris Flow Research. International Journal of Erosion Control Engineering, 2(1), 1–14. doi:10.13101/ijece.2.1.
[51] Pandey, M., Chen, S. C., Sharma, P. K., Ojha, C. S. P., & Kumar, V. (2019). Local scour of armor layer processes around the circular pier in non-uniform gravel bed. Water (Switzerland), 11(7), 1–10. doi:10.3390/w11071421.
[52] Jobson, H. E., & Froehlich, D. C. (1987). Basic principles of open channel hydraulics. Developments in Water Science, Elsevier, Amsterdam, Netherlands. doi:10.1016/S0167-5648(08)70006-6.
[53] Negara, A. S., Ikhsan, C., Hadiani, R. R., & Yusep, M. (2022). Effect of bed shear stress on the mobile armor layer at the riverbed. In The 8th International Conference of EACEF 2022, Switzerland.
[54] United States department of Agriculture. (2012). Chapter 3 Engineering Classification of Earth Materials. Part 631 National Engineering Handbook, Natural Resources Conservation Service, United States Department of Agriculture, Washington, United States.
[55] Yunatci, A. A., & Çetın, K. Ö. (2022). Large Scale Direct Shear Box Tests on Gravels. Teknik Dergi / Technical Journal of Turkish Chamber of Civil Engineers, 33(1), 11617–11623. doi:10.18400/tekderg.606816.
[56] Simoni, A., & Houlsby, G. T. (2006). The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering, 24(3), 523–549. doi:10.1007/s10706-004-5832-6.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.