The Influence of Climatic Aging on the Performance of Wood-Based Panels
Abstract
Doi: 10.28991/CEJ-2023-09-06-015
Full Text: PDF
Keywords
References
Kryvenko, P. V., Petropavlovsky, О., & Vozniuk, G. (2018). Alkaline aluminosilicate binder for gluing wood board materials. Key Engineering Materials, 761, 11-14. doi:10.4028/www.scientific.net/KEM.761.11.
Rowell, R. M., & Rowell, R. M. (2005). Handbook of Wood Chemistry and Wood Composites (1st Ed.), Boca Raton, United States. doi:10.1201/9780203492437.
Wang, L., Chen, S. S., Tsang, D. C., Poon, C. S., & Shih, K. (2016). Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Construction and Building materials, 125, 316-325. doi:10.1016/j.conbuildmat.2016.08.053.
Rubinskaya, A., & Batalova, O. (2015). Possibility of processing of solid industrial wastes in production of fibre boards. Actual Directions of Scientific Researches of the XXI Century: Theory and Practice, 3(2), 427–429. doi:10.12737/10194.
Boquillon, N., Elbez, G. R., & SchÖnfeld, U. (2004). Properties of wheat straw particleboards bonded with different types of resin. Journal of Wood Science, 50, 230-235. doi:10.1007/s10086-003-0551-9.
Antonov, A.V., Petrusheva, N.A., Alashkevich, Ju.D., & Reshetova, N.S. (2016). Search for optimal technological modes in the production of hard-to-ignite fiberboard. Chemistry of Plant Raw Materials, Vol. (4), 151-157.
Za’im, N. N. M., Yusop, H. M., & Ismail, W. N. W. (2021). Synthesis of Water-Repellent Coating for Polyester Fabric. Emerging Science Journal, 5(5), 747-754. doi:10.28991/esj-2021-01309.
Vakhnina, T. N., Fedotov, A. А., Susoeva, I. V., & Rumyantseva, V. E. (2022). Plywood and Thermal Insulation Boards Based on the Modified Phenol Formaldehyde Binder. Lesnoy Zhurnal (Forestry Journal), 1(1), 155–165. doi:10.37482/0536-1036-2022-1-155-165. (In Russian).
Leonovich, A.A., & Sheloumov, A.V. (2014). Production of fire-proof fiberboard using phosphoramide FCM. Russian Forestry Journal, Vol. (2), 101-108.
Chistova, N. G., Jakimov, V.A., Alashkevich, Ju.D. (2016). Improvement of the process of obtaining fiberboard by dry method. Chemistry of Plant Raw Materials, Vol. (3), 119-124.
Suchsland, O. (1987). Fiberboard manufacturing practices in the United States (No. 640). US Department of Agriculture, Forest Service, Washington, United States.
Ramesh, P., Mohit, H., & Arul Mozhi Selvan, V. (2021). Environmental Impact of Wood Based Biocomposite Using Life Cycle Assessment Methodology. Wood Polymer Composites, 255–268, 255–268. doi:10.1007/978-981-16-1606-8_13.
Hrázský, J., & Král, P. (2007). A contribution to the properties of combined plywood materials. Journal of Forest Science, 53(10), 483–490. doi:10.17221/2087-jfs.
Demir, A., Demirkir, C., & Aydin, I. (2019). The Effect of Some Technological Properties of Plywood Panels on Seismic Resistant Performance of Wooden Shear Wall. Sigma Journal of Engineering and Natural Sciences, 10(1), 37–45.
Akgül, M., & Çamlibel, O. (2008). Manufacture of medium density fiberboard (MDF) panels from rhododendron (R. Ponticum L.) biomass. Building and Environment, 43(4), 438–443. doi:10.1016/j.buildenv.2007.01.003.
Jorda, J., Kain, G., Barbu, M. C., Haupt, M., & Krišt’ák, L. (2020). Investigation of 3d-moldability of flax fiber reinforced beech plywood. Polymers, 12(12), 1–11. doi:10.3390/polym12122852.
Ashori, A., Nourbakhsh, A., & Karegarfard, A. (2009). Properties of medium density fiberboard based on bagasse fibers. Journal of Composite Materials, 43(18), 1927–1934. doi:10.1177/0021998309341099.
Ye, X. P., Julson, J., Kuo, M., Womac, A., & Myers, D. (2007). Properties of medium density fiberboards made from renewable biomass. Bioresource Technology, 98(5), 1077–1084. doi:10.1016/j.biortech.2006.04.022.
Trisatya, D. R., Satiti, E. R., Indrawan, D. A., & Tampubolon, R. M. (2020). Durability of fiber boards made of Jabon and Andong bamboo with additional activated carbon additives against dry wood termites and subterranean termites. IOP Conference Series: Earth and Environmental Science, 415(1), 012004. doi:10.1088/1755-1315/415/1/012004.
Mamontov, S.A., & Mamontov, A.A. (2020). Assessment of the resistance of fiberboard to aging. Young scientists – development of the National Technological Initiative (SEARCH-2020), Vol. 1, 416-419.
Lohmus, R., Kallakas, H., Tuhkanen, E., Gulik, V., Kiisk, M., Saal, K., & Kalamees, T. (2021). The effect of prestressing and temperature on tensile strength of basalt fiber-reinforced plywood. Materials, 14(16). doi:10.3390/ma14164701.
Jorda, J., Kain, G., Barbu, M. C., Köll, B., Petutschnigg, A., & Král, P. (2022). Mechanical Properties of Cellulose and Flax Fiber Unidirectional Reinforced Plywood. Polymers, 14(4). doi:10.3390/polym14040843.
Lerma, C., Mas, Á., Gil, E., Vercher, J., & Torner, M. E. (2018). Quantitative analysis procedure for building materials in historic buildings by applying infrared thermography. Russian Journal of Nondestructive Testing, 54, 601-609. doi:10.1134/S1061830918080065.
Zhurkov, S. N., Kuksenko, V. S., & Petrov, V. A. (1984). Principles of the kinetic approach of fracture prediction. Theoretical and Applied Fracture Mechanics, 1(3), 271–274. doi:10.1016/0167-8442(84)90007-7.
Zhurkov, S. N. (1984). Kinetic concept of the strength of solids. International Journal of Fracture, 26(4), 295–307. doi:10.1007/BF00962961.
Ratner, S. B., & Lur’e, E. G. (1966). Thermoactivation theory of wear in plastics. Polymer Mechanics, 2(6), 558–562. doi:10.1007/BF00859978.
DOI: 10.28991/CEJ-2023-09-06-015
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Ekaterina Pakhomova, Sergey Emelyanov, Viktor Yartsev, Vladislav Danilov, Pavel Monastyrev
This work is licensed under a Creative Commons Attribution 4.0 International License.