Prediction of Energy Consumption of an Administrative Building using Machine Learning and Statistical Methods
Abstract
Doi: 10.28991/CEJ-2023-09-05-01
Full Text: PDF
Keywords
References
Buildings & Energy Efficiency. (2023). Department of Housing and Urban Policy, Rabat, Morocco. Available online: http://www.mhpv.gov.ma/?page_id=3605 (Accessed on April 2023).
Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586–3592. doi:10.1016/j.rser.2012.02.049.
Yokoyama, R., Wakui, T., & Satake, R. (2009). Prediction of energy demands using neural network with model identification by global optimization. Energy Conversion and Management, 50(2), 319–327. doi:10.1016/j.enconman.2008.09.017.
Ekici, B. B., & Aksoy, U. T. (2009). Prediction of building energy consumption by using artificial neural networks. Advances in Engineering Software, 40(5), 356–362. doi:10.1016/j.advengsoft.2008.05.003.
Yalcintas, M., & Akkurt, S. (2005). Artificial neural networks applications in building energy predictions and a case study for tropical climates. International Journal of Energy Research, 29(10), 891–901. doi:10.1002/er.1105.
Elbeltagi, E., & Wefki, H. (2021). Predicting energy consumption for residential buildings using ANN through parametric modeling. Energy Reports, 7, 2534–2545. doi:10.1016/j.egyr.2021.04.053.
Mohandes, S. R., Zhang, X., & Mahdiyar, A. (2019). A comprehensive review on the application of artificial neural networks in building energy analysis. Neurocomputing, 340, 55–75. doi:10.1016/j.neucom.2019.02.040.
Runge, J., & Zmeureanu, R. (2019). Forecasting energy use in buildings using artificial neural networks: A review. Energies, 12(17). doi:10.3390/en12173254.
Lu, C., Li, S., & Lu, Z. (2022). Building energy prediction using artificial neural networks: A literature survey. Energy and Buildings, 262, 111718. doi:10.1016/j.enbuild.2021.111718.
Dong, B., Cao, C., & Lee, S. E. (2005). Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings, 37(5), 545–553. doi:10.1016/j.enbuild.2004.09.009.
Culaba, A. B., Del Rosario, A. J. R., Ubando, A. T., & Chang, J. S. (2020). Machine learning-based energy consumption clustering and forecasting for mixed-use buildings. International Journal of Energy Research, 44(12), 9659–9673. doi:10.1002/er.5523.
Yu, Z., Haghighat, F., Fung, B. C. M., & Yoshino, H. (2010). A decision tree method for building energy demand modeling. Energy and Buildings, 42(10), 1637–1646. doi:10.1016/j.enbuild.2010.04.006.
Edwards, R. E., New, J., & Parker, L. E. (2012). Predicting future hourly residential electrical consumption: A machine learning case study. Energy and Buildings, 49, 591–603. doi:10.1016/j.enbuild.2012.03.010.
Li, Q., Meng, Q., Cai, J., Yoshino, H., & Mochida, A. (2009). Predicting hourly cooling load in the building: A comparison of support vector machine and different artificial neural networks. Energy Conversion and Management, 50(1), 90–96. doi:10.1016/j.enconman.2008.08.033.
Papadopoulos, S., Azar, E., Woon, W. L., & Kontokosta, C. E. (2018). Evaluation of tree-based ensemble learning algorithms for building energy performance estimation. Journal of Building Performance Simulation, 11(3), 322–332. doi:10.1080/19401493.2017.1354919.
Borowski, M., & Zwolińska, K. (2020). Prediction of cooling energy consumption in hotel building using machine learning techniques. Energies, 13(23), 6226. doi:10.3390/en13236226.
Dong, Z., Liu, J., Liu, B., Li, K., & Li, X. (2021). Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification. Energy and Buildings, 241, 110929. doi:10.1016/j.enbuild.2021.110929.
Alsharif, M. H., Younes, M. K., & Kim, J. (2019). Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea. Symmetry, 11(2). doi:10.3390/sym11020240.
Jeong, K., Koo, C., & Hong, T. (2014). An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy, 71, 71–79. doi:10.1016/j.energy.2014.04.027.
Camara, A., Feixing, W., & Xiuqin, L. (2016). Energy Consumption Forecasting Using Seasonal ARIMA with Artificial Neural Networks Models. International Journal of Business and Management, 11(5), 231. doi:10.5539/ijbm.v11n5p231.
Tarmanini, C., Sarma, N., Gezegin, C., & Ozgonenel, O. (2023). Short term load forecasting based on ARIMA and ANN approaches. Energy Reports, 9, 550–557. doi:10.1016/j.egyr.2023.01.060.
Sayed, H. A., William, A., & Said, A. M. (2023). Smart Electricity Meter Load Prediction in Dubai Using MLR, ANN, RF, and ARIMA. Electronics (Switzerland), 12(2), 389. doi:10.3390/electronics12020389.
Lamrani, A., & Rougui, M. (2018). Parametric Study of Thermal Renovation of an Administrative Building Envelope in Region of Chefchaouen (Morocco). 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco. doi:10.1109/irsec.2018.8702919.
Kandananond, K. (2011). Forecasting electricity demand in Thailand with an artificial neural network approach. Energies, 4(8), 1246–1257. doi:10.3390/en4081246.
Tatarkanov, A. A., Alexandrov, I. A., Chervjakov, L. M., & Karlova, T. V. (2022). A Fuzzy Approach to the Synthesis of Cognitive Maps for Modeling Decision Making in Complex Systems. Emerging Science Journal, 6(2), 368-381. doi:10.28991/ESJ-2022-06-02-012.
Zhang, Z. (2016). A gentle introduction to artificial neural networks. Annals of Translational Medicine, 4(19), 370. doi:10.21037/atm.2016.06.20.
Krenker, A., Bester, J., & Kos, A. (2011). Introduction to the Artificial Neural Networks. Artificial Neural Networks - Methodological Advances and Biomedical Applications. doi:10.5772/15751.
Ranganathan, A. (2004). The levenberg-marquardt algorithm. Tutorial on LM algorithm, 11(1), 101-110.
Rodrigues, F., Cardeira, C., & Calado, J. M. F. (2014). The daily and hourly energy consumption and load forecasting using artificial neural network method: A case study using a set of 93 households in Portugal. Energy Procedia, 62, 220–229. doi:10.1016/j.egypro.2014.12.383.
Taki, M., Abdanan Mehdizadeh, S., Rohani, A., Rahnama, M., & Rahmati-Joneidabad, M. (2018). Applied machine learning in greenhouse simulation; new application and analysis. Information Processing in Agriculture, 5(2), 253–268. doi:10.1016/j.inpa.2018.01.003.
Fidan, S., Oktay, H., Polat, S., & Ozturk, S. (2019). An Artificial Neural Network Model to Predict the Thermal Properties of Concrete Using Different Neurons and Activation Functions. Advances in Materials Science and Engineering, 2019, 1–13,. doi:10.1155/2019/3831813.
Sutton, C. D. (2005). Classification and Regression Trees, Bagging, and Boosting. Data Mining and Data Visualization, 303–329, Elsevier, Amsterdam, Netherlands. doi:10.1016/s0169-7161(04)24011-1.
MATLAB. (2023). Ensemble Algorithms - MATLAB & Simulink. Available online: https://www.mathworks.com/help/stats/ ensemble-algorithms.html (accessed on April 2023).
Li, Q., Meng, Q., Cai, J., Yoshino, H., & Mochida, A. (2009). Applying support vector machine to predict hourly cooling load in the building. Applied Energy, 86(10), 2249–2256. doi:10.1016/j.apenergy.2008.11.035.
Fu, Y., Li, Z., Zhang, H., & Xu, P. (2015). Using Support Vector Machine to Predict Next Day Electricity Load of Public Buildings with Sub-metering Devices. Procedia Engineering, 121, 1016–1022. doi:10.1016/j.proeng.2015.09.097.
Wang, W., Xu, Z., Lu, W., & Zhang, X. (2003). Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55(3–4), 643–663. doi:10.1016/s0925-2312(02)00632-x.
Bounoua, Z., Ouazzani Chahidi, L., & Mechaqrane, A. (2021). Estimation of daily global solar radiation using empirical and machine-learning methods: A case study of five Moroccan locations. Sustainable Materials and Technologies, 28, 261. doi:10.1016/j.susmat.2021.e00261.
Laabid, A., Saad, A., & Mazouz, M. (2022). Integration of Renewable Energies in Mobile Employment Promotion Units for Rural Populations. Civil Engineering Journal, 8(7), 1406-1434. doi:10.28991/CEJ-2022-08-07-07.
Li, M. F., Tang, X. P., Wu, W., & Liu, H. Bin. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139–148. doi:10.1016/j.enconman.2013.03.004.
Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246–260. doi:10.1016/j.rser.2015.11.058.
Chahidi, L. O., Fossa, M., Priarone, A., & Mechaqrane, A. (2021). Evaluation of supervised learning models in predicting greenhouse energy demand and production for intelligent and sustainable operations. Energies, 14(19). doi:10.3390/en14196297.
DOI: 10.28991/CEJ-2023-09-05-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Meryem El Alaoui
This work is licensed under a Creative Commons Attribution 4.0 International License.