Assessment of Fly Ash-Rice Straw Ash-Laterite Soil Based Geopolymer Mortar Durability

Parea R. Rangan, M. Tumpu, . Mansyur, D. S. Mabui

Abstract


Geopolymer is an inorganic form of alumina-silica that is synthesized through materials containing lots of silica (Si) and alumina (Al) originating from nature or from industrial by-products. The geopolymer binder is a two-component inorganic system consisting of solid components that have sufficient amounts of SiO2 and Al2O3 to form compounds such as fly ash, rice straw ash, pozzolan, laterite soil, slag, etc. This study aims to analyze the compressive strength, chemical compositions, and geopolymerization process of geopolymers produced from fly ash, rice straw ash, and lateritic soil bound with an alkaline activator, sodium hydroxide (NaOH), with a concentration of 12 M. The durability of the geopolymer mortar was determined by soaking for 3, 7, and 28 days using water curing and sulphate curing (Sodium Sulphate, Na2SO4, and Sulfuric Acid, H2SO4). The results showed that sodium hydroxide (NaOH) can release silica and alumina in the amorphous phase and can be used as a binder for geopolymer mortar made from straw ash, fly ash, and laterite soil without using oven heat, according to compressive strength, chemical compositions, and the geopolymerization process. The results of this study can be used to support the use of waste materials (fly ash and laterite soil) and local materials (straw ash) as geopolymer mortar-forming materials. Furthermore, it can aid in the development of eco-friendly (environmentally friendly) national infrastructure by eliminating the need for oven heat to initiate the polymerization reaction. However, this research can also be developed to increase the compressive strength of geopolymer mortar, which resembles that of conventional concrete in general.

 

Doi: 10.28991/CEJ-2023-09-06-012

Full Text: PDF


Keywords


Fly Ash; Rice Straw Ash; Laterite Soil; Geopolymer; Durability.

References


Tumpu, M., & Mabui, D. S. (2022). Effect of hydrated lime (Ca(OH)2) to compressive strength of geopolymer concrete. AIP Conference Proceedings. doi:10.1063/5.0086702.

Mansyur, & Tumpu, M. (2022). Compressive strength of normal concrete using local fine aggregate from Binang River in Bombana district, Indonesia. AIP Conference Proceedings. doi:10.1063/5.0072888.

Dabakuyo, I., Mutuku, R. N., & Onchiri, R. O. (2022). Mechanical Properties of Compressed Earth Block Stabilized with Sugarcane Molasses and Metakaolin-Based Geopolymer. Civil Engineering Journal, 8(4), 780-795. doi:10.28991/CEJ-2022-08-04-012.

Rangan, P. R., Irmawaty, R., Amiruddin, A. A., & Bakri, B. (2020). Strength performance of sodium hydroxide-activated fly ash, rice straw ash, and laterite soil geopolymer mortar. IOP Conference Series: Earth and Environmental Science, 473(1), 012123. doi:10.1088/1755-1315/473/1/012123.

Zhang, P., Zheng, Y., Wang, K., & Zhang, J. (2018). A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152, 79-95. doi:10.1016/j.compositesb.2018.06.031.

Mansyur, & Tumpu, M. (2022). Compressive strength of non-sand concrete with coarse aggregate in Kolaka district as yard pavement. AIP Conference Proceedings. doi:10.1063/5.0072889.

Adnan, A., Parung, H., Tjaronge, M. W., & Djamaluddin, R. (2020). Bond between Steel Reinforcement Bars and Seawater Concrete. Civil Engineering Journal, 6, 61–68. doi:10.28991/cej-2020-sp(emce)-06.

Jindal, B. B. (2019). Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Construction and building materials, 227, 116644. doi:10.1016/j.conbuildmat.2019.08.025.

Tumpu, M., Rangan, P. R., & Mansyur. (2023). Compressive Strength Characteristic of Concrete Using Mountain Sand. IOP Conference Series: Earth and Environmental Science, 1134(1), 012046. doi:10.1088/1755-1315/1134/1/012046.

Benalia, S., Zeghichi, L., & Benghazi, Z. (2022). A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands. Civil Engineering Journal, 8(8), 1622-1638. doi:10.28991/CEJ-2022-08-08-07.

Mohammed, A. H., Mubarak, H. M., Hussein, A. K., Abulghafour, T. Z., & Nassani, D. E. (2022). Punching Shear Characterization of Steel Fiber-Reinforced Concrete Flat Slabs. HighTech and Innovation Journal, 3(4), 483-490. doi:10.28991/HIJ-2022-03-04-08.

Morsy, M. S., Alsayed, S. H., Al-Salloum, Y., & Almusallam, T. (2014). Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arabian journal for science and engineering, 39, 4333-4339. doi:10.1007/s13369-014-1093-8.

Deja, J., Uliasz-Bochenczyk, A., & Mokrzycki, E. (2010). CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control, 4(4), 583–588. doi:10.1016/j.ijggc.2010.02.002.

Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22(7), 1305–1314. doi:10.1016/j.conbuildmat.2007.10.015.

Phummiphan, I., Horpibulsuk, S., Sukmak, P., Chinkulkijniwat, A., Arulrajah, A., & Shen, S. L. (2016). Stabilization of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Materials and Pavement Design, 17(4), 877–891. doi:10.1080/14680629.2015.1132632.

Park, Y., Abolmaali, A., Kim, Y. H., & Ghahremannejad, M. (2016). Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. Construction and Building Materials, 118, 43–51. doi:10.1016/j.conbuildmat.2016.05.001.

Rangan, P. R., Irmawaty, R., Tjaronge, M. W., Amiruddin, A. A., Bakri, B., & Tumpu, M. (2021). The effect of curing on compressive strength of geo-polymer mortar made rice straw ash, fly ash, and laterite soil. IOP Conference Series: Earth and Environmental Science, 921(1), 12009. doi:10.1088/1755-1315/921/1/012009.

Maignien, R. (1966). Review of Research on Laterite. Natural Resource Research IV, UNESCO, Paris, France.

Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194–202. doi:10.1016/j.geotexmem.2006.11.002.

Kasthurba, A. K., Santhanam, M., & Mathews, M. S. (2007). Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India – Part 1: Field studies and profile characterisation. Construction and Building Materials, 21(1), 73–82. doi:10.1016/j.conbuildmat.2005.07.006.

Cizer, Ö., Elsen, J., Feys, D., Heirman, G., Vandewalle, L., Van Gemert, D., ... & De Schutter, G. (2011). Microstructural changes in self-compacting concrete by sulphuric acid attack.13th International Congress on the Chemistry of Cement, 3-8 July, 2013, Madrid, Spain.

Nugraha, P. D. A. (2007). Concrete Technology. Andi Publisher, Yogyakarta, Indonesia. (In Indonesian).

Matalkah, F., Soroushian, P., Balchandra, A., & Peyvandi, A. (2017). Characterization of Alkali-Activated Nonwood Biomass Ash–Based Geopolymer Concrete. Journal of Materials in Civil Engineering, 29(4). doi:10.1061/(asce)mt.1943-5533.0001801.

Detphan, S., & Chindaprasirt, P. (2009). Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 16(6), 720–726. doi:10.1016/S1674-4799(10)60019-2.

Roselló, J., Soriano, L., Santamarina, M. P., Akasaki, J. L., Monzó, J., & Payá, J. (2017). Rice straw ash: A potential pozzolanic supplementary material for cementing systems. Industrial Crops and Products, 103, 39–50. doi:10.1016/j.indcrop.2017.03.030.

Kim, Y. Y., Lee, B.-J., Saraswathy, V., & Kwon, S.-J. (2014). Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar. The Scientific World Journal, 2014, 1–10. doi:10.1155/2014/209584.

Al-Akhras, N. M., Al-Akhras, K. M., & Attom, M. F. (2008). Thermal cycling of wheat straw ash concrete. Proceedings of the Institution of Civil Engineers - Construction Materials, 161(1), 9–15. doi:10.1680/coma.2008.161.1.9.

Malasyi, S. (2014). Analysis of the Effect of Straw Ash on the Compressive Strength of Concrete. Teras Jurnal, 4, 2088–0561. (In Indonesian).

ASTM C618-03. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-03.

Temuujin, J., van Riessen, A., & Williams, R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of Hazardous Materials, 167(1–3), 82–88. doi:10.1016/j.jhazmat.2008.12.121.

Todingrara, Y. T., Tjaronge, M. W., Harianto, T., & Ramli, M. (2017). Performance of laterite soil stabilized with lime and cement as a road foundation. International Journal of Applied Engineering Research, 12(14), 4699-4707.

Persson, B. (2001). A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete. Cement and Concrete Research, 31(2), 193–198. doi:10.1016/S0008-8846(00)00497-X.

Petrillo, A., Cioffi, R., Ferone, C., Colangelo, F., & Borrelli, C. (2016). Eco-sustainable Geopolymer Concrete Blocks Production Process. Agriculture and Agricultural Science Procedia, 8, 408–418. doi:10.1016/j.aaspro.2016.02.037.

SNI 03-6825-2002. (2002.) Indonesian National Standard (SNI) Method of Testing the Compressive Strength of Portland Cement Mortar for Civil Works. National Standardization Council, Jakarta, Indonesia. (In Indonesian).

SNI 1974-2011. (2004). Indonesian National Standard (SNI) Method of Testing the Compressive Strength of Concrete with Cylindrical Specimens. National Standardization Council, Jakarta, Indonesia. (In Indonesian).

Saleh, F., Prayuda, H., Monika, F., & Pratama, M. M. A. (2019). Characteristics Comparison on Mechanical Properties of Mortars using Agriculture Waste as a Cement Replacement Materials. IOP Conference Series: Materials Science and Engineering, 650(1), 12039. doi:10.1088/1757-899X/650/1/012039.

Chen, X., Sutrisno, A., & Struble, L. J. (2018). Effects of calcium on setting mechanism of metakaolin-based geopolymer. Journal of the American Ceramic Society, 101(2), 957–968. doi:10.1111/jace.15249.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-06-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Parea Rusan Rangan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message