Reducing Effects of Initial Imperfection by Investment in the Orthotropic Characteristics of Laminated Composite Plate

Wisam Hamzah Mohammed, Svetlana Shambina, Haider Kadhim Ammash

Abstract


The target of this study is to reduce the impact of initial imperfection on the nonlinear dynamical performance of laminated composite plates by taking advantage of the orthotropic characteristics of laminated composite plates by changing carbon fiber sawing in the mass matrix and fiber orientation with different patterns and studying the effect of this optimization without and with initial imperfection (Wo) and different aspect ratios (W/L) and various boundary conditions through analyzing the load-displacement responses for plates under axial in-plane compressive loads by using the FORTRAN 94 programming language. Von-Karman's assumptions are utilized to include geometric nonlinearity for nine node isoperimetric quadrilateral components with five degrees of freedom into the structural model, which is based on first-order shear deformation theory. The Newmark’s implicit time integration method and Newton-Raphson iteration concurrently are employed to solve the nonlinear governing equation in conjunction. The study proved the effectiveness of the carbon fiber's varying geometric distribution and the difference in its directions in reducing the negative effects of the initial imperfection on the large elastic-plastic displacement and critical buckling. To highlight the veracity of the results, some of them have been validated against those found in the literature review.

 

Doi: 10.28991/CEJ-2023-09-07-03

Full Text: PDF


Keywords


Initial Imperfection; Composite Laminated Plates; Distribution Carbon Fiber; Orientation Carbon Fibers; Optimization; Dynamic Stability; Elastic-Plastic Displacement.

References


Ferreira, R. T. L., & Ashcroft, I. A. (2020). Optimal orientation of fiber composites for strength based on Hashin’s criteria optimality conditions. Structural and Multidisciplinary Optimization, 61(5), 2155–2176. doi:10.1007/s00158-019-02462-w.

Tsai, S. W., & Wu, E. M. (1971). A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials, 5(1), 58–80. doi:10.1177/002199837100500106.

Toyoda, M. (1991). Strength characteristics of composite materials. Welding International, 5(5), 341–345. doi:10.1080/09507119109446748.

Kondratiev, A. V., Gaidachuk, V. E., & Kharchenko, M. E. (2019). Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension. Mechanics of Composite Materials, 55, 259-266. doi:10.1007/s11029-019-09808-x.

Azzi, V. D., & Tsai, S. W. (1965). Anisotropic strength of composites - Investigation aimed at developing a theory applicable to laminated as well as unidirectional composites, employing simple material properties derived from unidirectional specimens alone. Experimental Mechanics, 5(9), 283–288. doi:10.1007/BF02326292.

Joshi, R., & Pal, P. (2021). Ply-by-ply failure analysis of laminates under dynamic loading. Sound and Vibration, 55(2), 173–190. doi:10.32604/SV.2021.011387.

Adams, R. D., & Bacon, D. G. C. (1973). Effect of Fiber Orientation and Laminate Geometry on the Dynamic Properties of CFRP. Journal of Composite Materials, 7(4), 402–428. doi:10.1177/002199837300700401.

Leissa, A. W., & Martin, A. F. (1990). Vibration and buckling of rectangular composite plates with variable fiber spacing. Composite Structures, 14(4), 339–357. doi:10.1016/0263-8223(90)90014-6.

Pandey, M. D. (1999). Effect of fiber waviness on buckling strength of composite plates. Journal of engineering mechanics, 125(10), 1173-1179. doi:10.1061/(ASCE)0733-9399(1999)125:10(1173).

Williams, D. G., & Walker, A. C. (1975). Explicit Solutions for the Design of Initially Deformed Plates Subject to Compression. Proceedings of the Institution of Civil Engineers, 59(4), 763–787. doi:10.1680/iicep.1975.3638.

Yang, J., Liew, K. M., & Kitipornchai, S. (2006). Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates. International Journal of Solids and Structures, 43(17), 5247–5266. doi:10.1016/j.ijsolstr.2005.06.061.

Feddal, I., Khamlichi, A., & Ameziane, K. (2018). Effects of plies orientations and initial geometric imperfections on buckling strength of a composite stiffened panel. MATEC Web of Conferences, 191, 8–11. doi:10.1051/matecconf/201819100008.

Ghannadpour, S. A. M., & Mehrparvar, M. (2020). Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique. Composite Materials and Engineering, 2(1), 25–41. doi:10.12989/cme.2020.2.1.025.

Al-Ramahee, M. A., & Abodi, J. T. (2020). Effect of variable fiber spacing on dynamic behavior of a laminated composite plate. Journal of Green Engineering, 10(11), 12663–12677.

Mondal, S., & Ramachandra, L. S. (2020). Nonlinear dynamic pulse buckling of imperfect laminated composite plate with delamination. International Journal of Solids and Structures, 198, 170–182. doi:10.1016/j.ijsolstr.2020.04.010.

Cetkovic, M. (2022). Influence of initial geometrical imperfections on thermal stability of laminated composite plates using layerwise finite element. Composite Structures, 291, 115547. doi:10.1016/j.compstruct.2022.115547.

Thor, M., Mandel, U., Nagler, M., Maier, F., Tauchner, J., Sause, M. G. R., & Hinterhölzl, R. M. (2021). Numerical and experimental investigation of out-of-plane fiber waviness on the mechanical properties of composite materials. International Journal of Material Forming, 14(1), 19–37. doi:10.1007/s12289-020-01540-5.

Barbero, E. J., & Reddy, J. N. (1991). Modeling of delamination in composite laminates using a layer-wise plate theory. International Journal of Solids and Structures, 28(3), 373–388. doi:10.1016/0020-7683(91)90200-Y.

Nguyen-Xuan, H., Thai, C. H., Bleyer, J., & Nguyen, P. V. (2014). Upper bound limit analysis of plates using a rotation-free isogeometric approach. Asia Pacific Journal on Computational Engineering, 1(1). doi:10.1186/s40540-014-0012-5.

Ammash, H. (2008). Nonlinear Static and Dynamic Analysis of Laminated Plates Under In-plane Forces Some of the authors of this publication are also working on these related projects: Stability in Elastic-plastic States of Columns View project Stability of Plates and Shells View project (Issue November). doi:10.13140/RG.2.2.33369.01128.

Mohammed, W. H., Shambina, S., & Ammash, H. K. (2022). Effect of Fibers Orientation on the Nonlinear Dynamic Performance of Laminated Composite Plate under Different Loading In-plane. Civil Engineering Journal, 8(12), 2706–2720. doi:10.28991/CEJ-2022-08-12-03.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-03

Refbacks





Copyright (c) 2023 Wisam Hamzah Mohammed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message