Reducing Effects of Initial Imperfection by Investment in the Orthotropic Characteristics of Laminated Composite Plate
Abstract
Doi: 10.28991/CEJ-2023-09-07-03
Full Text: PDF
Keywords
References
Ferreira, R. T. L., & Ashcroft, I. A. (2020). Optimal orientation of fiber composites for strength based on Hashin’s criteria optimality conditions. Structural and Multidisciplinary Optimization, 61(5), 2155–2176. doi:10.1007/s00158-019-02462-w.
Tsai, S. W., & Wu, E. M. (1971). A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials, 5(1), 58–80. doi:10.1177/002199837100500106.
Toyoda, M. (1991). Strength characteristics of composite materials. Welding International, 5(5), 341–345. doi:10.1080/09507119109446748.
Kondratiev, A. V., Gaidachuk, V. E., & Kharchenko, M. E. (2019). Relationships between the ultimate strengths of polymer composites in static bending, compression, and tension. Mechanics of Composite Materials, 55, 259-266. doi:10.1007/s11029-019-09808-x.
Azzi, V. D., & Tsai, S. W. (1965). Anisotropic strength of composites - Investigation aimed at developing a theory applicable to laminated as well as unidirectional composites, employing simple material properties derived from unidirectional specimens alone. Experimental Mechanics, 5(9), 283–288. doi:10.1007/BF02326292.
Joshi, R., & Pal, P. (2021). Ply-by-ply failure analysis of laminates under dynamic loading. Sound and Vibration, 55(2), 173–190. doi:10.32604/SV.2021.011387.
Adams, R. D., & Bacon, D. G. C. (1973). Effect of Fiber Orientation and Laminate Geometry on the Dynamic Properties of CFRP. Journal of Composite Materials, 7(4), 402–428. doi:10.1177/002199837300700401.
Leissa, A. W., & Martin, A. F. (1990). Vibration and buckling of rectangular composite plates with variable fiber spacing. Composite Structures, 14(4), 339–357. doi:10.1016/0263-8223(90)90014-6.
Pandey, M. D. (1999). Effect of fiber waviness on buckling strength of composite plates. Journal of engineering mechanics, 125(10), 1173-1179. doi:10.1061/(ASCE)0733-9399(1999)125:10(1173).
Williams, D. G., & Walker, A. C. (1975). Explicit Solutions for the Design of Initially Deformed Plates Subject to Compression. Proceedings of the Institution of Civil Engineers, 59(4), 763–787. doi:10.1680/iicep.1975.3638.
Yang, J., Liew, K. M., & Kitipornchai, S. (2006). Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates. International Journal of Solids and Structures, 43(17), 5247–5266. doi:10.1016/j.ijsolstr.2005.06.061.
Feddal, I., Khamlichi, A., & Ameziane, K. (2018). Effects of plies orientations and initial geometric imperfections on buckling strength of a composite stiffened panel. MATEC Web of Conferences, 191, 8–11. doi:10.1051/matecconf/201819100008.
Ghannadpour, S. A. M., & Mehrparvar, M. (2020). Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique. Composite Materials and Engineering, 2(1), 25–41. doi:10.12989/cme.2020.2.1.025.
Al-Ramahee, M. A., & Abodi, J. T. (2020). Effect of variable fiber spacing on dynamic behavior of a laminated composite plate. Journal of Green Engineering, 10(11), 12663–12677.
Mondal, S., & Ramachandra, L. S. (2020). Nonlinear dynamic pulse buckling of imperfect laminated composite plate with delamination. International Journal of Solids and Structures, 198, 170–182. doi:10.1016/j.ijsolstr.2020.04.010.
Cetkovic, M. (2022). Influence of initial geometrical imperfections on thermal stability of laminated composite plates using layerwise finite element. Composite Structures, 291, 115547. doi:10.1016/j.compstruct.2022.115547.
Thor, M., Mandel, U., Nagler, M., Maier, F., Tauchner, J., Sause, M. G. R., & Hinterhölzl, R. M. (2021). Numerical and experimental investigation of out-of-plane fiber waviness on the mechanical properties of composite materials. International Journal of Material Forming, 14(1), 19–37. doi:10.1007/s12289-020-01540-5.
Barbero, E. J., & Reddy, J. N. (1991). Modeling of delamination in composite laminates using a layer-wise plate theory. International Journal of Solids and Structures, 28(3), 373–388. doi:10.1016/0020-7683(91)90200-Y.
Nguyen-Xuan, H., Thai, C. H., Bleyer, J., & Nguyen, P. V. (2014). Upper bound limit analysis of plates using a rotation-free isogeometric approach. Asia Pacific Journal on Computational Engineering, 1(1). doi:10.1186/s40540-014-0012-5.
Ammash, H. (2008). Nonlinear Static and Dynamic Analysis of Laminated Plates Under In-plane Forces Some of the authors of this publication are also working on these related projects: Stability in Elastic-plastic States of Columns View project Stability of Plates and Shells View project (Issue November). doi:10.13140/RG.2.2.33369.01128.
Mohammed, W. H., Shambina, S., & Ammash, H. K. (2022). Effect of Fibers Orientation on the Nonlinear Dynamic Performance of Laminated Composite Plate under Different Loading In-plane. Civil Engineering Journal, 8(12), 2706–2720. doi:10.28991/CEJ-2022-08-12-03.
DOI: 10.28991/CEJ-2023-09-07-03
Refbacks
Copyright (c) 2023 Wisam Hamzah Mohammed
This work is licensed under a Creative Commons Attribution 4.0 International License.