Modeling of Heat Transfer in Massive Concrete Foundations Using 3D-FDM

Dina M. Mansour, Ahmed M. Ebid


Analyzing and modeling the thermal behavior of mass concrete elements has been widely investigated by several researchers. Lately, many contemporary finite element packages have embedded modules for analyzing thermal behavior. Unfortunately, these packages are quite complex and require experts to be properly implemented. This paper proposes a simple and practical approach using the 3D-Finite Difference Model (3D-FDM) developed by MS-Excel to overcome the complexity of the other FE models. The model is utilized to predict the thermal behavior of actual bridge pile caps (3D model) rather than the previously developed 2D models in earlier research. The results of the analysis are compared with the concrete temperatures that were experimentally obtained from the site. Site data was collected using 18 thermocouple probes (K type) that were installed in two pile caps. These thermocouples were installed before concrete pouring to monitor the temperatures generated due to the exothermic reaction of the cement, which occurs during casting and the maturity period of concrete. The readings were registered every 3 hours for 7 days after concrete placement. This research provides a comparison between the recorded site data and the thermal analysis based on the proposed 3D-FDM. Results proved that concrete temperature time histories at different locations of the bridge pile caps could be properly predicted using the developed 3D-FDM.


Doi: 10.28991/CEJ-2023-09-10-05

Full Text: PDF


3D-Finite Difference; Mass Concrete; Thermal Analysis; Bridge Pile Caps; Thermal Modeling.


Guo, C., & Lu, Z. (2020). Effect of temperature on CFST arch bridge ribs in harsh weather environments. Mechanics of Advanced Materials and Structures, 29, 1–16. doi:10.1080/15376494.2020.1790701.

Fan, J. S., Li, B. L., Liu, C., & Liu, Y. F. (2022). An efficient model for simulation of temperature field of steel-concrete composite beam bridges. Structures, 43, 1868–1880. doi:10.1016/j.istruc.2022.05.079.

ACI 116R-00. (2005). Cement and Concrete Terminology. American Concrete Institute (ACI), Michigan, United States.

da Amorim Coelho, N., Pedroso, L. J., da Silva Rêgo, J. H., & Nepomuceno, A. A. (2014). Use of ANSYS for Thermal Analysis in Mass Concrete. Journal of Civil Engineering and Architecture, 8(7), 860–868. doi:10.17265/1934-7359/2014.07.007.

Shawkey, M. A., Hassan, A. M., & Rashad, M. M. (2022). Numerical Analysis of Thermal Cracking Estimation of Mass Concrete With GGBS at an Early Age. Egyptian Journal of Chemistry, 65(5), 193–205. doi:10.21608/ejchem.2021.97424.4554.

Mansour, D. M., & Ebid, A. M. (2023). Predicting thermal behavior of mass concrete elements using 3D finite difference model. Asian Journal of Civil Engineering. doi:10.1007/s42107-023-00864-2.

Yikici, T. A., Sezer, H., & Chen, H. L. (2022). Modeling Thermal Behavior of Mass Concrete Structures at Early Age. Transportation Research Record, 2676(6), 536–548. doi:10.1177/03611981221075626.

Bartojay, K. (2012). Thermal properties of reinforced structural mass concrete. Dam Safety Technology Development Program, Bureau of Reclamation, Denver, United States.

Klemczak, B., & Żmij, A. (2021). Insight into thermal stress distribution and required reinforcement reducing early-age cracking in mass foundation slabs. Materials, 14(3), 1–19. doi:10.3390/ma14030477.

Xu, Z. H., Sun, D. W., & Xiao, H. (2012). Finite Element Analysis of Mass Concrete Temperature Crack Mechanism. Advanced Materials Research, 594–597, 713–716. doi:10.4028/

Zhang, T., Wang, H., Luo, Y., Yuan, Y., & Wang, W. (2023). Hydration Heat Control of Mass Concrete by Pipe Cooling Method and On-Site Monitoring-Based Influence Analysis of Temperature for a Steel Box Arch Bridge Construction. Materials, 16(7), 2925. doi:10.3390/ma16072925.

Portland Cement Association. (1997). Portland cement, concrete, and heat of hydration. Concrete Technology Today, 18(2), 1-4.

Kumar, K. A., Rajasekhar, K., & Sashidhar, C. (2022). Experimental Research on the Effects of Waste Foundry Sand on the Strength and Micro-Structural Properties of Concrete. Civil Engineering Journal, 8(10), 2172-2189. doi:10.28991/CEJ-2022-08-10-010.

Onyelowe, K. C., Ebid, A. M., Ramani Sujatha, E., Fazel-Mojtahedi, F., Golaghaei-Darzi, A., Kontoni, D.-P. N., & Nooralddin-Othman, N. (2023). Extensive overview of soil constitutive relations and applications for geotechnical engineering problems. Heliyon, 9(3), e14465. doi:10.1016/j.heliyon.2023.e14465.

ACI 207.R-05. (1997). Guide to Mass Concrete. American Concrete Institute (ACI), Michigan, United States.

Rita, M., Fairbairn, E., Ribeiro, F., Andrade, H., & Barbosa, H. (2018). Optimization of Mass Concrete Construction Using a Twofold Parallel Genetic Algorithm. Applied Sciences, 8(3), 399. doi:10.3390/app8030399.

Gajda, J. (2007). Mass concrete for buildings and bridges. Portland Cement Association, Washington, United States.

Leon, G., & Chen, H. L. (2021). Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag. CivilEng, 2(1), 254–270. doi:10.3390/civileng2010014.

Marshall, A. L. (1972). The thermal properties of concrete. Building Science, 7(3), 167–174. doi:10.1016/0007-3628(72)90022-9.

Aït Alaïwa, A., Thiebaut, Y., Linger, L., & Boutillon, L. (2022). Operational implementation of concrete thermal modeling for construction projects. Structural Concrete, 23(6), 3754–3771. Portico. doi:10.1002/suco.202100725.

Han, S. (2020). Assessment of curing schemes for effectively controlling thermal behavior of mass concrete foundation at early ages. Construction and Building Materials, 230, 117004. doi:10.1016/j.conbuildmat.2019.117004.

Liu, X., Zhang, C., Chang, X., Zhou, W., Cheng, Y., & Duan, Y. (2015). Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering, 78, 449–459. doi:10.1016/j.applthermaleng.2014.12.050.

Yang, J., Hu, Y., Zuo, Z., Jin, F., & Li, Q. (2012). Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes. Applied Thermal Engineering, 35(1), 145–156. doi:10.1016/j.applthermaleng.2011.10.016.

Maruyama, I., & Lura, P. (2019). Properties of early-age concrete relevant to cracking in massive concrete. Cement and Concrete Research, 123, 105770. doi:10.1016/j.cemconres.2019.05.015.

Chu, I., Lee, Y., Amin, M. N., Jang, B. S., & Kim, J. K. (2013). Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure. Construction and Building Materials, 45, 192–198. doi:10.1016/j.conbuildmat.2013.03.056.

Chen, H. L. (Roger), Mardmomen, S., & Leon, G. (2021). On-site measurement of heat of hydration of delivered mass concrete. Construction and Building Materials, 269. doi:10.1016/j.conbuildmat.2020.121246.

Dam Safety Program Technology Development. (2017). Comparison of Thermal Property Models for Concrete, Geotechnical, and Structural Laboratory. U.S. Department of the Interior Bureau of Reclamation, Washington, United States.

ACI 207. 2R-07. (2007). Report on Thermal and Volume Change Effects on Cracking of Mass Concrete. American Concrete Institute (ACI), Michigan, United States.

Bobko, C. P., Zadeh, V. Z., & Seracino, R. (2015). Improved Schmidt Method for Predicting Temperature Development in Mass Concrete. ACI Materials Journal, 112(4), 579–586. doi:10.14359/51687454.

Abeka, H., Adom-Asamoah, M., Osei Banahene, J., & Adinkrah-Appiah, K. (2018). Temperature prediction models in mass concrete state of the art literature review. 1st International Conference on Engineering, Science, Technology and Entrepreneurship (ESTE), 6-7 August, 2015, Kumasi, Ghana.

Zhu, F., Chen, G., Zhang, F., & Li, Q. (2021). Numerical Simulation of Thermal Field in Mass Concrete with Pipe Water Cooling. Frontiers in Physics, 9. doi:10.3389/fphy.2021.716859.

Huang, Y., Liu, G., Huang, S., Rao, R., & Hu, C. (2018). Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete. Construction and Building Materials, 192, 240–252. doi:10.1016/j.conbuildmat.2018.10.128.

Do, T., Lawrence, A., Tia, M., & Bergin, M. (2013). Importance of insulation at the bottom of mass concrete placed on soil with high groundwater. Transportation Research Record, 2342(2342), 113–120. doi:10.3141/2342-14.

Sargam, Y., Faytarouni, M., Riding, K., Wang, K., Jahren, C., & Shen, J. (2019). Predicting thermal performance of a mass concrete foundation – A field monitoring case study. Case Studies in Construction Materials, 11, 289–305. doi:10.1016/j.cscm.2019.e00289.

Lin, Y., & Chen, H. L. (2015). Thermal analysis and adiabatic calorimetry for early-age concrete members. Journal of Thermal Analysis and Calorimetry, 122(2), 937–945. doi:10.1007/s10973-015-4843-2.

Lawrence, A. M., Tia, M., Ferraro, C. C., & Bergin, M. (2012). Effect of Early Age Strength on Cracking in Mass Concrete Containing Different Supplementary Cementitious Materials: Experimental and Finite-Element Investigation. Journal of Materials in Civil Engineering, 24(4), 362–372. doi:10.1061/(asce)mt.1943-5533.0000389.

Yikici, T. A., & Chen, H.-L. (Roger). (2015). Numerical Prediction Model for Temperature Development in Mass Concrete Structures. Transportation Research Record: Journal of the Transportation Research Board, 2508(1), 102–110. doi:10.3141/2508-13.

Mahdi, I. M., Khalil, A. H., Mahdi, H. A., & Mansour, D. M. M. (2022). Decision support system for optimal bridge’ maintenance. International Journal of Construction Management, 22(3), 342–356. doi:10.1080/15623599.2019.1623991.

Mohamed Mansour, D. M., Moustafa, I. M., Khalil, A. H., & Mahdi, H. A. (2019). An assessment model for identifying maintenance priorities strategy for bridges. Ain Shams Engineering Journal, 10(4), 695–704. doi:10.1016/j.asej.2019.06.003.

The National Research Centre for Housing and Building. (2018). The Egyptian Code for Design and Construction of Reinforced Concrete Structures 203-2018. The National Research Centre for Housing and Building, Cairo, Egypt.

Bobko, C. P., Seracino, R., Zia, P., Edwards, A., & Hall, M. (2014). Crack Free Mass Concrete Footings on Bridges in Coastal Environments. North Carolina State University, Raleigh, United States.

Yeon, J. H., Choi, S., & Won, M. C. (2013). In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development. Construction and Building Materials, 38, 306–315. doi:10.1016/j.conbuildmat.2012.07.111.

Lee, M. H., Chae, Y. S., Khil, B. S., & Yun, H. D. (2014). Influence of Casting Temperature on the Heat of Hydration in Mass Concrete Foundation with Ternary Cements. Applied Mechanics and Materials, 525, 478–481. doi:10.4028/

Asadi, I., Shafigh, P., Abu Hassan, Z. F. Bin, & Mahyuddin, N. B. (2018). Thermal conductivity of concrete – A review. Journal of Building Engineering, 20, 81–93. doi:10.1016/j.jobe.2018.07.002.

ACI 122R-02. (2002). Guide to Thermal Prosperities of Concrete and Masonry Systems. American Concrete Institute (ACI), Michigan, United States.

Livesey, P., Donnelly, A., & Tomlinson, C. (1991). Measurement of the heat of hydration of cement. Cement and Concrete Composites, 13(3), 177–185. doi:10.1016/0958-9465(91)90018-D.

Kuriakose, B., Rao, B. N., Dodagoudar, G. R., & Venkatachalapathy, V. (2015). Modelling of heat of hydration for thick concrete constructions - A note. Journal of Structural Engineering (India), 42(4), 348–357.

Ebid, A. M., Onyelowe, K. C., Kontoni, D.-P. N., Gallardo, A. Q., & Hanandeh, S. (2023). Heat and mass transfer in different concrete structures: a study of self-compacting concrete and geopolymer concrete. International Journal of Low-Carbon Technologies, 18, 404–411. doi:10.1093/ijlct/ctad022.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-10-05


  • There are currently no refbacks.

Copyright (c) 2023 Dina Mansour

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.