Reducing the Highway Networks Energy Bills using Renewable Energy System

Sami Ayyad, Mousa Bani Baker, Ahmed Handam, Takialddin Al-Smadi

Abstract


Jordan has significant renewable energy potential due to its remarkable geographical location and climate conditions. This potential elevates engaging several innovative renewable alternatives in energy development, which may efficiently minimize the excessive import of traditional energy sources. The objective of this research is to study the potential of utilizing clean and affordable solar energy along roadways such as Jordan’s Desert Highway-15 to be in line with the United Nations Sustainable Development Goals (UN-SDG’s) by installing selected solar panels that possess adequate friction and the ability to allow solar radiation to reach the solar cells, in addition to allowing the load to be bypassed around the cells. The shoulder of the highway, with a length of 315 km and a width of 3.0 meters, has been exploited in order to supply the neighboring areas with energy for those roads, particularly those paved roads, which are poorly lit at night. Furthermore, this study provides direction and guidance concerning the structural performance of non-traditional pavement materials, which are a form of subgrade or pavement reinforcement. The performance of a prototype board on a variety of structural bases has also been evaluated. Overall, this paper found that it is possible to design a solar road panel to withstand traffic loading and that the concrete structural base allows for a significant improvement of the analyzed prototype design, especially in countries with limited energy sources and dependent on imports such as Jordan.

 

Doi: 10.28991/CEJ-2023-09-11-019

Full Text: PDF


Keywords


Renewable Energy Source; Renewable Energy; Highway; Pavement Materials; Photovoltaic Cells; Jordan.

References


Li, S., Ma, T., & Wang, D. (2023). Photovoltaic pavement and solar road: A review and perspectives. Sustainable Energy Technologies and Assessments, 55, 102933. doi:10.1016/j.seta.2022.102933.

Handam, A., & Al Smadi, T. (2022). Multivariate analysis of efficiency of energy complexes based on renewable energy sources in the system power supply of autonomous consumer. International Journal of Advanced and Applied Sciences, 9(5), 109–118. doi:10.21833/ijaas.2022.05.014.

Papadimitriou, C. N., Psomopoulos, C. S., & Kehagia, F. (2019). A review on the latest trend of solar pavements in urban environment. Energy Procedia, 157, 945–952. doi:10.1016/j.egypro.2018.11.261.

Hu, H., Vizzari, D., Zha, X., & Roberts, R. (2021). Solar pavements: A critical review. Renewable and Sustainable Energy Reviews, 152, 111712. doi:10.1016/j.rser.2021.111712.

Zhou, B., Pei, J., Nasir, D. M., & Zhang, J. (2021). A review on solar pavement and photovoltaic/thermal (PV/T) system. Transportation Research Part D: Transport and Environment, 93, 102753. doi:10.1016/j.trd.2021.102753.

Takialddin, A. S., Al-Agha, O. I., & Alsmadi, K.A. (2018). Overview of model free adaptive (MFA) control technology. IAES International Journal of Artificial Intelligence, 7(4), 165–169. doi:10.11591/ijai.v7.i4.pp165-169.

Ma, T., Li, S., Gu, W., Weng, S., Peng, J., & Xiao, G. (2022). Solar energy harvesting pavements on the road: comparative study and performance assessment. Sustainable Cities and Society, 81, 103868. doi:10.1016/j.scs.2022.103868.

Nassef, A. M., & Handam, A. (2022). Parameter Estimation-Based Slime Mold Algorithm of Photocatalytic Methane Reforming Process for Hydrogen Production. Sustainability (Switzerland), 14(5), 2970. doi:10.3390/su14052970.

Al-Maitah, M., Al Smadi, T. A., & Al-Zoubi, H. Q. R. (2014). Scalable user interface. Research Journal of Applied Sciences, Engineering and Technology, 7(16), 3273–3279. doi:10.19026/rjaset.7.671.

Gaeid, K. S., Homod, R. Z., Al Mashhadany, Y., Al Smadi, T., Ahmed, M. S., & Abbas, A. E. (2022). Describing Function Approach with PID Controller to Reduce Nonlinear Action. International Journal of Electrical and Electronics Research, 10(4), 976–983. doi:10.37391/ijeer.100437.

Smadi, T. A. A. (2012). Computer application using low cost smart sensor. International Journal of Computer Aided Engineering and Technology, 4(6), 567–579. doi:10.1504/IJCAET.2012.049572.

Alahmer, A., Alahmer, H., Handam, A., & Rezk, H. (2022). Environmental Assessment of a Diesel Engine Fueled with Various Biodiesel Blends: Polynomial Regression and Grey Wolf Optimization. Sustainability (Switzerland), 14(3), 1367. doi:10.3390/su14031367.

Zaidan, M. H., Khalaf, H. J., & Shaker, A. M. (2017). Optimum Design of Parabolic Solar Collector with Exergy Analysis. Tikrit Journal of Engineering Sciences, 24(4), 79–87. doi:10.25130/tjes.24.4.10.

Gagliano, A., Tina, G. M., Aneli, S., & Nižetić, S. (2019). Comparative assessments of the performances of PV/T and conventional solar plants. Journal of Cleaner Production, 219, 304–315. doi:10.1016/j.jclepro.2019.02.038.

Abdulfatah, A. S., & Sae’d, E. K. (2016). Modeling and Simulation Control of Buck Converter Applied to Solar Energy. Tikrit Journal of Engineering Sciences, 23(4), 31–35. doi:10.25130/tjes.23.4.04.

Zapar, W. M., Gaeid, K. S., Mokhlis, H. Bin, & Al Smadi, T. A. (2023). Review of the Most Recent Work in Fault Tolerant Control of Power Plants 2018 – 2022. Tikrit Journal of Engineering Sciences, 30(2), 103–113. doi:10.25130/tjes.30.2.11.

Al-Husban, Y., Al-Ghriybah, M., Handam, A., Al Smadi, T., & Al Awadi, R. (2022). Residential Solar Energy Storage System: State of the Art, Recent Applications, Trends, and Development. Journal of Southwest Jiaotong University, 57(5), 750–769. doi:10.35741/issn.0258-2724.57.5.61.

Dezfooli, A. S., Nejad, F. M., Zakeri, H., & Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272–284. doi:10.1016/j.solener.2017.04.016.

Jiang, W., Sha, A., Xiao, J., Li, Y., & Huang, Y. (2015). Experimental study on filtration effect and mechanism of pavement runoff in permeable asphalt pavement. Construction and Building Materials, 100, 102–110. doi:10.1016/j.conbuildmat.2015.09.055.

Al-Husban, Y., Al-Ghriybah, M., Gaeid, K. S., Takialddin, A. S., Handam, A., & Alkhazaleh, A. H. (2023). Optimization of the Residential Solar Energy Consumption Using the Taguchi Technique and Box-Behnken Design: a Case Study for Jordan. International Journal on Energy Conversion, 11(1), 25–33. doi:10.15866/irecon.v11i1.22672.

Garber, N. J., & Hoel, L. A. (2019). Traffic and highway engineering. Cengage Learning, Boston, United States.

Northmore, A. B., & Tighe, S. L. (2016). Performance modelling of a solar road panel prototype using finite element analysis. International Journal of Pavement Engineering, 17(5), 449–457. doi:10.1080/10298436.2014.993203.

Kayal, M. (1995). Rock of Ages: Petra. Jordan’s Ancient City of Temples and Tomb. The library, The Washington Post, Washington, United States.

MPWH. (2018). The road network in the Kingdom by governorates. Ministry of Public Works & Housing, Amman, Jordan. Available online: https://www.mpwh.gov.jo/Default/Ar (accessed on May 2023).

Liu, Y., Su, P., Li, M., You, Z., & Zhao, M. (2020). Review on evolution and evaluation of asphalt pavement structures and materials. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 573–599. doi:10.1016/j.jtte.2020.05.003.

K. S. Gaeid, T. Al Smadi, and U. Abubakar, “Double control strategy of PMSM rotor speed-based traction drive using resolver,” Results in Control and Optimization, vol. 13, p. 100301, Dec. 2023, doi: 10.1016/j.rico.2023.100301.

Lee, K W. W., Greenfield, M., DeCotis, A., & Lapierre, K. (2022). Solar Energy Harvesting and Pavement Sensing. Road and Airfield Pavement Technology. Lecture Notes in Civil Engineering, 193, Springer, Cham, Switzerland. doi:10.1007/978-3-030-87379-0_18.

Ali, N. M., & Ammari, H. (2022). Design of a hybrid wind-solar street lighting system to power LED lights on highway poles. AIMS Energy, 10(2), 177–190. doi:10.3934/ENERGY.2022010.

Qaiser, I. (2022). A comparison of renewable and sustainable energy sector of the South Asian countries: An application of SWOT methodology. Renewable Energy, 181, 417–425. doi:10.1016/j.renene.2021.09.066.

Gulagi, A., Alcanzare, M., Bogdanov, D., Esparcia, E., Ocon, J., & Breyer, C. (2021). Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines. Renewable and Sustainable Energy Reviews, 144, 110934. doi:10.1016/j.rser.2021.110934.

Afsharzade, N., Papzan, A., Ashjaee, M., Delangizan, S., Van Passel, S., & Azadi, H. (2016). Renewable energy development in rural areas of Iran. Renewable and Sustainable Energy Reviews, 65, 743–755. doi:10.1016/j.rser.2016.07.042.

Aguirre-Mendoza, A. M., Díaz-Mendoza, C., & Pasqualino, J. (2019). Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia. Ecological Engineering, 130, 252–262. doi:10.1016/j.ecoleng.2017.08.020.

Al-Dousari, A., Al-Nassar, W., Al-Hemoud, A., Alsaleh, A., Ramadan, A., Al-Dousari, N., & Ahmed, M. (2019). Solar and wind energy: Challenges and solutions in desert regions. Energy, 176, 184–194. doi:10.1016/j.energy.2019.03.180.

Yang, M., Zhang, X., Zhou, X., Liu, B., Wang, X., & Lin, X. (2021). Research and exploration of phase change materials on solar pavement and asphalt pavement: a review. Journal of Energy Storage, 35, 102246. doi:10.1016/j.est.2021.102246.

Dezfooli, A. S., Nejad, F. M., Zakeri, H., & Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272–284. doi:10.1016/j.solener.2017.04.016.

Khalaf, K. A., Gamil, A., Attiya, B., & Cuello, J. (2023). Exploring the potential of concentrating solar power technologies for vertical farming in arid regions: The case of Western Iraq. Energy for Sustainable Development, 77, 101310. doi:10.1016/j.esd.2023.101310.

Jiang, W., Xiao, J., Yuan, D., Lu, H., Xu, S., & Huang, Y. (2018). Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy and Buildings, 169, 39-47. doi:10.1016/j.enbuild.2018.03.049.

Jiang, W., Yuan, D., Xu, S., Hu, H., Xiao, J., Sha, A., & Huang, Y. (2017). Energy harvesting from asphalt pavement using thermoelectric technology. Applied Energy, 205, 941-950. doi:10.1016/j.apenergy.2017.08.091.

Ma, T., Yang, H., Gu, W., Li, Z., & Yan, S. (2019). Development of walkable photovoltaic floor tiles used for pavement. Energy Conversion and Management, 183, 764–771. doi:10.1016/j.enconman.2019.01.035.

Bani Baker, M. I., Abendeh, R. M., & Khasawneh, M. A. (2022). Freeze and Thaw Effect on Asphalt Concrete Mixtures Modified with Natural Bentonite Clay. Coatings, 12(11), 1664. doi:10.3390/coatings12111664.

Baker, M. B., & Abendeh, R. (2022). Improving asphalt concrete resistance to rapid freeze–thaw effect using HIPS polymer. Emerging Materials Research, 11(3), 356–366. doi:10.1680/jemmr.21.00129.

Khedaywi, T., Bani Baker, M., & Al-Kattab, T. (2023). Effect of Waste Ceramic Powder on the Properties of Asphalt Binder and Asphalt Concrete Mixtures. International Journal of Pavement Research and Technology. doi:10.1007/s42947-023-00375-y.

Smadi, T. A., Handam, A., Gaeid, K. S., Al-Smadi, A., Al-Husban, Y., & Khalid, A. Smadi. (2023). Artificial Intelligent Control of Energy Management PV System. Results in Control and Optimization, 100343. doi:10.1016/j.rico.2023.100343.

Gan, P. Y., & Li, Z. (2015). Quantitative study on long term global solar photovoltaic market. Renewable and Sustainable Energy Reviews, 46, 88–99. doi:10.1016/j.rser.2015.02.041.

Northmore, A.B., Tighe, S. (2012). Developing innovative roads using solar technologies. In Proceedings of the 2012 Annual Conference of the Canadian Society for Civil Engineering, Edmonton, AB, Canada, 6–9 June 2012; Volume 2, 1348–1355.

Dezfooli, A. S., Nejad, F. M., Zakeri, H., & Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272–284. doi:10.1016/j.solener.2017.04.016.

Ma, T., Yang, H., & Lu, L. (2014). Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. Solar Energy, 100, 31–41. doi:10.1016/j.solener.2013.12.003.

Northmore, A. B., & Tighe, S. L. (2014). Performance modelling of a solar road panel prototype using finite element analysis. International Journal of Pavement Engineering, 17(5), 449–457. doi:10.1080/10298436.2014.993203.

Smadi, T. A., & Al-Maitah, M. (2020). Artificial intelligent technology for safe driver assistance system. International Journal of Computer Aided Engineering and Technology, 13(1-2), 183-191. doi:10.1504/IJCAET.2020.108112.

Coutu, R. A., Newman, D., Munna, M., Tschida, J. H., & Brusaw, S. (2020). Engineering Tests to Evaluate the Feasibility of an Emerging Solar Pavement Technology for Public Roads and Highways. Technologies, 8(1), 9. doi:10.3390/technologies8010009.

Trrad, I., Smadi, T.A., & Al_wahshat, H. (2019). Application of fuzzy logic to cognitive wireless communications. International Journal of Recent Technology and Engineering, 8(3), 2228–2234. doi:10.35940/ijrte.B2065.098319.

Wang, M., Mao, X., Gao, Y., & He, F. (2018). Potential of carbon emission reduction and financial feasibility of urban rooftop photovoltaic power generation in Beijing. Journal of Cleaner Production, 203, 1119–1131. doi:10.1016/j.jclepro.2018.08.350.

Dai, Y., Yin, Y., & Lu, Y. (2021). Strategies to facilitate photovoltaic applications in road structures for energy harvesting. Energies, 14(21), 7097. doi:10.3390/en14217097.

Manasrah, A., Al Zyoud, A., & Abdelhafez, E. (2021). Effect of color and nano film filters on the performance of solar photovoltaic module. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 43(6), 705–715. doi:10.1080/15567036.2019.1631907.

Al-Smadi, T.A., & Ibrahim, Y. K. (2007). Design of speed independent ripple carry adder. Journal of Applied Sciences, 7(6), 848–854. doi:10.3923/jas.2007.848.854.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-11-019

Refbacks





Copyright (c) 2023 Prof-Al Smadi Takialddin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message