Four-Face Heated Uniaxial Reinforced Concrete Columns Interaction Charts
Downloads
Doi: 10.28991/CEJ-2023-09-07-01
Full Text: PDF
Downloads
[2] Burgess, I. W., & Najjar, S. R. (1994). A simple approach to the behaviour of steel columns in fire. Journal of Constructional Steel Research, 31(1), 115–134. doi:10.1016/0143-974X(94)90027-2.
[3] Kodur, V. K. R., Wang, T. C., & Cheng, F. P. (2004). Predicting the fire resistance behaviour of high strength concrete columns. Cement and Concrete Composites, 26(2), 141–153. doi:10.1016/S0958-9465(03)00089-1.
[4] Al-Ansari, M. S., & Afzal, M. S. (2020). Mathematical model for analysis of uniaxial and biaxial reinforced concrete columns. Advances in Civil Engineering, 8868481. doi:10.1155/2020/8868481.
[5] Tan, K. H., & Yao, Y. (2003). Fire resistance of four-face heated reinforced concrete columns. Journal of Structural Engineering, 129(9), 1220-1229. doi:10.1061/(ASCE)0733-9445(2003)129:9(1220).
[6] Dotreppe, J. C., Franssen, J. M., & Vanderzeypen, Y. (1999). Calculation method for design of reinforced concrete columns under fire conditions. ACI Structural Journal, 96(1), 9–18. doi:10.14359/591.
[7] Dotreppe, J. C., Franssen, J. M., Bruls, A., Baus, R., Vandevelde, P., Minne, R., Van Nieuwenburg, D., & Lambotte, H. (1997). Experimental research on the determination of the main parameters affecting the behaviour of reinforced concrete columns under fire conditions. Magazine of Concrete Research, 48(6), 117–127. doi:10.1680/macr.1997.49.179.117.
[8] Lie, T. T., & Woollerton, J. L. (1988). Fire resistance of reinforced concrete columns: test results. National Research Council Canada, Institute for Research in Construction, Quebec, Canada.
[9] Zhou, X., Yang, J., Liu, J., Wang, S., & Wang, W. (2021). Fire resistance of thin-walled steel tube confined reinforced concrete middle-length columns: Test and numerical simulation. Structures, 34, 339–355. doi:10.1016/j.istruc.2021.07.078.
[10] Martins, A. M. B., & Rodrigues, J. P. C. (2010). Fire resistance of reinforced concrete columns with elastically restrained thermal elongation. Engineering Structures, 32(10), 3330–3337. doi:10.1016/j.engstruct.2010.07.005.
[11] Xu, Y., & Wu, B. (2009). Fire resistance of reinforced concrete columns with L-, T-, and +-shaped cross-sections. Fire Safety Journal, 44(6), 869–880. doi:10.1016/j.firesaf.2009.04.002.
[12] Kodur, V., & McGrath, R. (2003). Fire endurance of high strength concrete columns. Fire Technology, 39(1), 73–87. doi:10.1023/A:1021731327822.
[13] Franssen, J. M., & Dotreppe, J. C. (2003). Fire tests and calculation methods for circular concrete columns. Fire Technology, 39(1), 89–97. doi:10.1023/A:1021783311892.
[14] ENV 1992-1-2:2004. (2004). Eurocode 2: Design of concrete structures – Part 1.2: General rules Structural fire design, European Committee for Standardization, Brussels, Belgium. doi:10.3403/03213853u.
[15] Phan, L. T., & Carino, N. J. (1998). Review of Mechanical Properties of HSC at Elevated Temperature. Journal of Materials in Civil Engineering, 10(1), 58–65. doi:10.1061/(asce)0899-1561(1998)10:1(58).
[16] Kodur, V., & McGrath, R. (2001). Performance of high strength concrete columns under severe fire conditions. CONSEC'01: Third International Conference on Concrete Under Severe Conditions, 18-20 June, 2001, Vancouver, Canada.
[17] Wu, B., Hong, Z., Tang, G. H., & Wang, C. (2007). Fire resistance of reinforced concrete columns with square cross section. Advances in Structural Engineering, 10(4), 353–369. doi:10.1260/136943307783239336.
[18] Kang, H., Cheon, N. R., Lee, D. H., Lee, J., Kim, K. S., & Kim, H. Y. (2017). P-M interaction curve for reinforced concrete columns exposed to elevated temperature. Computers and Concrete, 19(5), 537–544. doi:10.12989/cac.2017.19.5.537.
[19] Tan, K. H., & Yao, Y. (2004). Fire Resistance of Reinforced Concrete Columns Subjected to 1-, 2-, and 3-Face Heating. Journal of Structural Engineering, 130(11), 1820–1828. doi:10.1061/(asce)0733-9445(2004)130:11(1820).
[20] Andenberg, Y. (1978). Analytical fire design of reinforced concrete structures based on real fire characteristics. FIB Eight Congress Proceedings, 1(30), April-5 May, 1978, London, United Kingdom.
[21] FIN EC Structural Software (2023). Intuitive suite for frames, individual elements and details. Prague, Czech Republic. Available online: https://www.finesoftware.eu/structural-analyses/ (accessed on April 2023).
[22] ISO-834-13. (2019). Fire-resistance tests-Elements of building construction-Part 13: Requirements for the testing and assessment of applied fire protection to steel beams with web openings. International Organization for Standardization (ISO), Geneva, Switzerland.
[23] Franssen, J.M., (1999). Manual of SAFIR. Civil and Structural Engineering Department, University of Liege, Liège, Belgium.
[24] Al-Ansari, M. S., & Afzal, M. S. (2019). Simplified biaxial column interaction charts. Engineering Reports, 1(5), 1-15. doi:10.1002/eng2.12076.
[25] Rodrigues, H., Romí£o, X., Andrade-Campos, A., Varum, H., Aríªde, A., & Costa, A. G. (2012). Simplified hysteretic model for the representation of the biaxial bending response of RC columns. Engineering Structures, 44, 146-158. doi:10.1016/j.engstruct.2012.05.050.
[26] ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States. doi:10.14359/51716937.
[27] James, G., MacGregor, J. G., & Wight, J. K. (2015). Reinforced Concrete: Mechanics and Design (8th Ed.). Prentice Hall, Hoboken, United States.
[28] fib CEB-FIP. (1991). Fire Design of Concrete Structures in Accordance with CEB-FIP Model Code 90-Final Draft. Bulletin d'Information du CEB, (208), Lausanne, Switzerland.
[29] Chudyba, K., & Seręga, S. (2013). Structural fire design methods for reinforced concrete members. Czasopismo Techniczne, Technical Transactions, Civil Engineering, 1-B/2013.
[30] Hertz, K. D. (2019). Fire exposure. Design of Fire-resistant Concrete Structures. ICE publishing, London, United Kingdom. doi:10.1680/dofrcs.64447.051.
[31] Jaszczak, B., Kuczma, M., & Szymkuć, W. (2021). Comparison of the load-bearing capacity of reinforced concrete columns under fire conditions using the method A, zone method and isotherm 500 method. Fire Safety Journal, 124, 103396. doi:10.1016/j.firesaf.2021.103396.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.