Four-Face Heated Uniaxial Reinforced Concrete Columns Interaction Charts

Mohammed S. Al-Ansari, Muhammad S. Afzal


This paper presents an analytical method for generating the interaction diagrams of uniaxially reinforced concrete (RC) columns that are subjected to four-face heating. Twenty-one (21) specimens obtained from previous case studies that were subjected to four-face heating (with different fire test times ranging from 63 to 356 fire minutes) are used to validate the proposed uniaxial interaction charts. The results obtained from the case studies and from the proposed charts are also compared with the finite element software (FIN EC). The 500°C isotherm as well as the zone method are used in the computer software program to find the required load capacities. The proposed method's values fall within the range of values obtained from laboratory tests and computer software, which suggests its validity. Also, the zone method in FIN-EC software is reliable for evaluating load-bearing capacity, while the 500°C method is useful in situations with shorter fire times. The results obtained provide a valuable tool for designing and evaluating structures that may be exposed to fire. Nonetheless, the study is restricted by its concentration on a particular type of column under four-face heating, which may reduce its relevance to other types of structures and heating situations.


Doi: 10.28991/CEJ-2023-09-07-01

Full Text: PDF


Uniaxial Columns; 4-Face Heating; Fire Time; Interaction Charts; Axial Load Capacity.


Anderberg, Y. (1983). Predicted fire behaviour of steels and concrete structures. LUTVDG/TVBB--3011--SE; Volume 3011, Division of Building Fire Safety and Technology, Lund Institute of Technology, Lund, Sweden.

Burgess, I. W., & Najjar, S. R. (1994). A simple approach to the behaviour of steel columns in fire. Journal of Constructional Steel Research, 31(1), 115–134. doi:10.1016/0143-974X(94)90027-2.

Kodur, V. K. R., Wang, T. C., & Cheng, F. P. (2004). Predicting the fire resistance behaviour of high strength concrete columns. Cement and Concrete Composites, 26(2), 141–153. doi:10.1016/S0958-9465(03)00089-1.

Al-Ansari, M. S., & Afzal, M. S. (2020). Mathematical model for analysis of uniaxial and biaxial reinforced concrete columns. Advances in Civil Engineering, 8868481. doi:10.1155/2020/8868481.

Tan, K. H., & Yao, Y. (2003). Fire resistance of four-face heated reinforced concrete columns. Journal of Structural Engineering, 129(9), 1220-1229. doi:10.1061/(ASCE)0733-9445(2003)129:9(1220).

Dotreppe, J. C., Franssen, J. M., & Vanderzeypen, Y. (1999). Calculation method for design of reinforced concrete columns under fire conditions. ACI Structural Journal, 96(1), 9–18. doi:10.14359/591.

Dotreppe, J. C., Franssen, J. M., Bruls, A., Baus, R., Vandevelde, P., Minne, R., Van Nieuwenburg, D., & Lambotte, H. (1997). Experimental research on the determination of the main parameters affecting the behaviour of reinforced concrete columns under fire conditions. Magazine of Concrete Research, 48(6), 117–127. doi:10.1680/macr.1997.49.179.117.

Lie, T. T., & Woollerton, J. L. (1988). Fire resistance of reinforced concrete columns: test results. National Research Council Canada, Institute for Research in Construction, Quebec, Canada.

Zhou, X., Yang, J., Liu, J., Wang, S., & Wang, W. (2021). Fire resistance of thin-walled steel tube confined reinforced concrete middle-length columns: Test and numerical simulation. Structures, 34, 339–355. doi:10.1016/j.istruc.2021.07.078.

Martins, A. M. B., & Rodrigues, J. P. C. (2010). Fire resistance of reinforced concrete columns with elastically restrained thermal elongation. Engineering Structures, 32(10), 3330–3337. doi:10.1016/j.engstruct.2010.07.005.

Xu, Y., & Wu, B. (2009). Fire resistance of reinforced concrete columns with L-, T-, and +-shaped cross-sections. Fire Safety Journal, 44(6), 869–880. doi:10.1016/j.firesaf.2009.04.002.

Kodur, V., & McGrath, R. (2003). Fire endurance of high strength concrete columns. Fire Technology, 39(1), 73–87. doi:10.1023/A:1021731327822.

Franssen, J. M., & Dotreppe, J. C. (2003). Fire tests and calculation methods for circular concrete columns. Fire Technology, 39(1), 89–97. doi:10.1023/A:1021783311892.

ENV 1992-1-2:2004. (2004). Eurocode 2: Design of concrete structures – Part 1.2: General rules Structural fire design, European Committee for Standardization, Brussels, Belgium. doi:10.3403/03213853u.

Phan, L. T., & Carino, N. J. (1998). Review of Mechanical Properties of HSC at Elevated Temperature. Journal of Materials in Civil Engineering, 10(1), 58–65. doi:10.1061/(asce)0899-1561(1998)10:1(58).

Kodur, V., & McGrath, R. (2001). Performance of high strength concrete columns under severe fire conditions. CONSEC'01: Third International Conference on Concrete Under Severe Conditions, 18-20 June, 2001, Vancouver, Canada.

Wu, B., Hong, Z., Tang, G. H., & Wang, C. (2007). Fire resistance of reinforced concrete columns with square cross section. Advances in Structural Engineering, 10(4), 353–369. doi:10.1260/136943307783239336.

Kang, H., Cheon, N. R., Lee, D. H., Lee, J., Kim, K. S., & Kim, H. Y. (2017). P-M interaction curve for reinforced concrete columns exposed to elevated temperature. Computers and Concrete, 19(5), 537–544. doi:10.12989/cac.2017.19.5.537.

Tan, K. H., & Yao, Y. (2004). Fire Resistance of Reinforced Concrete Columns Subjected to 1-, 2-, and 3-Face Heating. Journal of Structural Engineering, 130(11), 1820–1828. doi:10.1061/(asce)0733-9445(2004)130:11(1820).

Andenberg, Y. (1978). Analytical fire design of reinforced concrete structures based on real fire characteristics. FIB Eight Congress Proceedings, 1(30), April-5 May, 1978, London, United Kingdom.

FIN EC Structural Software (2023). Intuitive suite for frames, individual elements and details. Prague, Czech Republic. Available online: (accessed on April 2023).

ISO-834-13. (2019). Fire-resistance tests-Elements of building construction-Part 13: Requirements for the testing and assessment of applied fire protection to steel beams with web openings. International Organization for Standardization (ISO), Geneva, Switzerland.

Franssen, J.M., (1999). Manual of SAFIR. Civil and Structural Engineering Department, University of Liege, Liège, Belgium.

Al-Ansari, M. S., & Afzal, M. S. (2019). Simplified biaxial column interaction charts. Engineering Reports, 1(5), 1-15. doi:10.1002/eng2.12076.

Rodrigues, H., Romão, X., Andrade-Campos, A., Varum, H., Arêde, A., & Costa, A. G. (2012). Simplified hysteretic model for the representation of the biaxial bending response of RC columns. Engineering Structures, 44, 146-158. doi:10.1016/j.engstruct.2012.05.050.

ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States. doi:10.14359/51716937.

James, G., MacGregor, J. G., & Wight, J. K. (2015). Reinforced Concrete: Mechanics and Design (8th Ed.). Prentice Hall, Hoboken, United States.

fib CEB-FIP. (1991). Fire Design of Concrete Structures in Accordance with CEB-FIP Model Code 90-Final Draft. Bulletin d'Information du CEB, (208), Lausanne, Switzerland.

Chudyba, K., & Seręga, S. (2013). Structural fire design methods for reinforced concrete members. Czasopismo Techniczne, Technical Transactions, Civil Engineering, 1-B/2013.

Hertz, K. D. (2019). Fire exposure. Design of Fire-resistant Concrete Structures. ICE publishing, London, United Kingdom. doi:10.1680/dofrcs.64447.051.

Jaszczak, B., Kuczma, M., & Szymkuć, W. (2021). Comparison of the load-bearing capacity of reinforced concrete columns under fire conditions using the method A, zone method and isotherm 500 method. Fire Safety Journal, 124, 103396. doi:10.1016/j.firesaf.2021.103396.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-07-01


  • There are currently no refbacks.

Copyright (c) 2023 Mohammed Salem Al-Ansari, Muhammad Shekaib Afzal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.