Investigating the Consolidation Behaviour of Cement-Bentonite Barrier Materials Containing PFA and GGBS

Muhammad A. Walenna

Abstract


Cement-Bentonite (CB) barriers are expected to become a sustainable and reliable engineering solution. The deformation of CB is of interest to engineers to comprehend, particularly how CB responds to changes in loading during its construction and service life. The purpose of this study was to examine how samples of CB mixtures behaved during consolidation. This study investigated: (1) the influence of curing time and constituent materials on the consolidation properties of CB samples, (2) the volumetric change and the rate of volumetric change in response to a specific loading condition via consolidation tests. For this purpose, a laboratory consolidation test with a load range of 50 to 3200 kPa was carried out in accordance with BS 1377-7:1990 using the oedometer apparatus. This study discovered that the consolidation characteristics of CB samples are similar to those of overconsolidated soil. The CB sample became more resistant to consolidation under varying loads as curing progressed. The presence of more bentonite resulted in an increase in the recompression index. The inclusion of GGBS contributed to the consolidation characteristics of CB through the following mechanisms: (1) the significant decrease of the degree of consolidation with a curing period longer than 28 days, despite the slow strength development of the early-age curing; (2) the increase of the preconsolidation pressure; and the addition of GGBS was found to be more effective than the addition of more bentonite in increasing the preconsolidation pressure.

 

Doi: 10.28991/CEJ-2023-09-03-02

Full Text: PDF


Keywords


Cement-Bentonite; Consolidation; Barrier Material; Clay; Geotechnical Engineering.

References


Jefferis, S. (2012). Cement-Bentonite Slurry Systems. Grouting and Deep Mixing 2012. Proceedings of the Fourth International Conference on Grouting and Deep Mixing, February 15-18, 2012, Louisiana, United States. doi:10.1061/9780784412350.0001.

Jefferis, S. A. (1997). The origins of the slurry trench cut-off and a review of cement-bentonite cut-off walls in the UK. International Containment Technology Conference and Exhibition, 9-12 February, 1997, St. Petersburg, Florida, United States.

Institution of Civil Engineers (ICE). (1999). Specification for the construction of slurry trench cutoff walls. Thomas Telford, London, United Kingdom.

Dinchak, W.G. (1985). Cement-bentonite slurry walls limit seepage. Energy and Water Resources Department, Portland Cement Association, Washington, United States.

Visudmedanukul, P. (2004). Solute transport through cement-bentonite barriers. Ph.D. Thesis, University of Kyoto, Kyoto, Japan.

Ryan, C.R. & Day, S.R. (1986). Performance evaluation of cement-bentonite slurry wall mix design. HMCRI Conference, Washington, United States.

Pearlman, L. (1999). Subsurface containment and monitoring systems: Barriers and beyond. National Network of Environmental Management Studies Fellow for US Environmental Protection Agency, U. S. Environmental protection Agency, Office of Solid Waste and Emergency Response, Technology Innovative Office, Washington, United States.

Andromalos, K. B. & Fisher, M. J. (2001). Design and control of slurry wall backfill mixes for groundwater containment”. Proceeding of 2001 International Containment and Remediation Technology Conference and Exhibition, 10-13 June 2001, Orlando, Florida, United States.

Samuels, S. G. (1950). The Effect of Base Exchange on the Engineering Properties of Clays. Building Research Station, Department of Science and Industrial Research, Garston, United Kingdom.

Horpibulsuk, S., Yangsukkaseam, N., Chinkulkijniwat, A., & Du, Y. J. (2011). Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science, 52(1–2), 150–159. doi:10.1016/j.clay.2011.02.014.

Sreedharan, V., & Puvvadi, S. (2013). Compressibility behaviour of bentonite and organically modified bentonite slurry. Geotechnique, 63(10), 876–879. doi:10.1680/geot.SIP13.P.008.

Tripathy, S., & Schanz, T. (2007). Compressibility behaviour of clays at large pressures. Canadian Geotechnical Journal, 44(3), 355–362. doi:10.1139/T06-123.

Baille, W., Tripathy, S., & Schanz, T. (2010). Swelling pressures and one-dimensional compressibility behaviour of bentonite at large pressures. Applied Clay Science, 48(3), 324–333. doi:10.1016/j.clay.2010.01.002.

Robinson, R. G., & Allam, M. M. (1998). Effect of clay mineralogy on coefficient of consolidation. Clays and Clay Minerals, 46(5), 596–600. doi:10.1346/CCMN.1998.0460514.

Flessati, L., Della Vecchia, G., & Musso, G. (2021). Mechanical Behavior and Constitutive Modeling of Cement–Bentonite Mixtures for Cutoff Walls. Journal of Materials in Civil Engineering, 33(3), 4020483. doi:10.1061/(asce)mt.1943-5533.0003584.

Cotecchia, F., Cafaro, F., & Aresta, B. (2007). Structure and mechanical response of sub-Apennine Blue Clays in relation to their geological and recent loading history. Geotechnique, 57(2), 167–180. doi:10.1680/geot.2007.57.2.167.

Alzayani, N. J., Royal, A. C. D., Ghataora, G. S., & Jefferson, I. (2017). Cement-bentonite in comparison with other cemented materials. Environmental Geotechnics, 4(5), 353–372. doi:10.1680/jenge.14.00050.

Uchaipichat, A. (2017). Effect of curing pressure on compression and consolidation behaviors of cement admixed clay. Key Engineering Materials, 744 744 KEM, 71–76. doi:10.4028/www.scientific.net/KEM.744.71.

Saeed, K. A., Kassim, K. A., Nur, H., & Yunus, N. Z. M. (2019). Comparison of Compressibility Behaviour of Lime-Cement Stabilized Lateritic Clay Soil Contaminated by Heavy Metals. IOP Conference Series: Materials Science and Engineering, 584(1), 12037. doi:10.1088/1757-899X/584/1/012037.

Khan, Q., Ng, Y., & Ku, T. (2019). Small strain stiffness of artificially cemented soft clay: Modelling the effect of structure degradation. E3S Web of Conferences, 92, 11009. doi:10.1051/e3sconf/20199211009.

Tsige, D., Korita, M., & Beyene, A. (2022). Deformation analysis of cement modified soft clay soil using finite element method (FEM). Heliyon, 8(6). doi:10.1016/j.heliyon.2022.e09613.

Yu, J., Mao, Z., Zhou, J., Yu, Z., Liu, X., & Gong, X. (2023). Experimental Study on Engineering Properties of Cemented Soil with High Water Content. Applied Sciences (Switzerland), 13(2), 937. doi:10.3390/app13020937.

Cai, H., Chen, C., Wei, S., & Zhu, S. (2023). Strength Development of Cemented Soil Cured in Water-Air Conditions at Varied Temperatures: Experimental Investigation and Model Characterization. Journal of Materials in Civil Engineering, 35(3), 4022466. doi:10.1061/(asce)mt.1943-5533.0004631.

Oberhollenzer, S., Baldermann, A., Marte, R., Tahir, D. M. M., Tschuchnigg, F., Dietzel, M., & Nachtnebel, M. (2022). Microstructure Development in Artificially Cemented, Fine-Grained Soils. Geosciences (Switzerland), 12(9), 333. doi:10.3390/geosciences12090333.

Fan, R., Yang, Y., & Liu, S. (2021). Impact of in Situ Soil in Soil-Bentonite Cutoff Wall Backfill on Compressibility and Hydraulic Conductivity. Advances in Civil Engineering, 2021. doi:10.1155/2021/9350604.

Baxter, D. Y., Filz, G. M., & Heslin, G. M. (2005). Strength and Compressibility of Soil-Bentonite Mixtures for Cutoff Walls. GSP 142 Waste Containment and Remediation, 1–14. doi:10.1061/40789(168)44.

Fan, R. D., Du, Y. J., Liu, S. Y., & Chen, Z. B. (2013). Engineering behavior and sedimentation behavior of lead contaminated soil-bentonite vertical cutoff wall backfills. Journal of Central South University, 20(8), 2255–2262. doi:10.1007/s11771-013-1732-3.

Ryan, C. R., & Day, S. R. (2002). Soil-Cement-Bentonite Slurry Walls. Deep Foundations 2002. doi:10.1061/40601(256)51.

Evans, J. (1994). Hydraulic Conductivity of Vertical Cutoff Walls. Hydraulic Conductivity and Waste Contaminant Transport in Soil, ASTM International, Pennsylvania, United States. doi:10.1520/stp23885s.

Daniel, D. E., & Choi, H. (1999). Hydraulic conductivity evaluation of vertical barrier walls. Proceedings of the 1999 3rd National Conference on Geo-Engineering for Underground Facilities, 13-17 June, 1999, University of Illinois, Champaign, United States.

Filz, G. M., Henry, L. B., Heslin, G. M., & Davidson, R. R. (2001). Determining Hydraulic Conductivity of Soil-Bentonite Using the API Filter Press. Geotechnical Testing Journal, 24(1), 61–71. doi:10.1520/gtj11282j.

Wang, Q., Tang, A. M., Cui, Y. J., Delage, P., & Gatmiri, B. (2012). Experimental study on the swelling behaviour of bentonite/claystone mixture. Engineering Geology, 124(1), 59–66. doi:10.1016/j.enggeo.2011.10.003.

Alawaji, H. A. (1999). Swell and compressibility characteristics of sand-bentonite mixtures inundated with liquids. Applied Clay Science, 15(3–4), 411–430. doi:10.1016/S0169-1317(99)00033-2.

Mishra, A. K., Ohtsubo, M., Li, L. Y., & Higashi, T. (2010). Influence of the bentonite on the consolidation behaviour of soil-bentonite mixtures. Carbonates and Evaporites, 25(1), 43–49. doi:10.1007/s13146-010-0006-5.

Opdyke, S. M., & Evans, J. C. (2005). Slag-Cement-Bentonite Slurry Walls. Journal of Geotechnical and Geoenvironmental Engineering, 131(6), 673–681. doi:10.1061/(asce)1090-0241(2005)131:6(673).

Royal, A. C. D., Makhover, Y., Moshirian, S., & Hesami, D. (2013). Investigation of Cement-Bentonite Slurry Samples Containing PFA in the UCS and Triaxial Apparatus. Geotechnical and Geological Engineering, 31(2), 767–781. doi:10.1007/s10706-013-9626-6.

Royal, A. C. D., Opukumo, A. W., Qadr, C. S., Perkins, L. M., & Walenna, M. A. (2018). Deformation and Compression Behaviour of a Cement–Bentonite Slurry for Groundwater Control Applications. Geotechnical and Geological Engineering, 36(2), 835–853. doi:10.1007/s10706-017-0359-9.

Kadhim, N. R., Hussain, W. A. M., Abdulrasool, A. T., & Azeez, M. A. (2022). The Influence of Nanoclay and Powdered Ceramic on the Mechanical Properties of Mortar. Civil Engineering Journal (Iran), 8(7), 1435–1446. doi:10.28991/CEJ-2022-08-07-08.

Talefirouz, D., & Çokça, E. (2021). Use of Powdered Steel Slag in Cement-Bentonite Slurry Wall Construction. Şırnak Üniversitesi Fen Bilimleri Dergisi, 2(2), 1-15.

Cao, B., & Al-Tabbaa, A. (2022). Reactive MgO-based self-healing slag-cement-bentonite slurry walls. Cement and Concrete Composites, 131. doi:10.1016/j.cemconcomp.2022.104565.

Liu, Z., Liu, Y., Bolton, M., Ong, D. E. L., & Oh, E. (2020). Effect of cement and bentonite mixture on the consolidation behavior of soft estuarine soils. International Journal of GEOMATE, 18(65), 49–54. doi:10.21660/2019.64.19076.

Ding, J., Gan, Y., Zhang, T., Yan, M., & Zhao, Q. (2019). Analysis of Factors Affecting Performance of Cement-Bentonite Mud Impervious Wall. IOP Conference Series: Materials Science and Engineering, 611(1), 012047. doi:10.1088/1757-899x/611/1/012047.

Nejad, B. G., Osborne, T., & Carter, J. P. (2017). Forensic Investigation of a Slurry Wall Failure: A Case Study. Grouting. doi:10.1061/9780784480809.049.

D’Appolonia, D. J. (1980). Soil-Bentonite Slurry Trench Cutoffs. Journal of the Geotechnical Engineering Division, 106(4), 399–417. doi:10.1061/ajgeb6.0000945.

Garvin, S. L., & Hayles, C. S. (1999). Chemical compatibility of cement-bentonite cut-off wall material. Construction and Building Materials, 13(6), 329–341. doi:10.1016/S0950-0618(99)00024-0.

Wong, L. S., Hashim, R., & Ali, F. (2013). Utilization of sodium bentonite to maximize the filler and pozzolanic effects of stabilized peat. Engineering Geology, 152(1), 56–66. doi:10.1016/j.enggeo.2012.10.019.

Detwiler, R. J., Bhatty, J. I., Barger, G., & Hansen, E. R. (2001). Durability of concrete containing calcined clay. Concrete International, 23(4), 45-49.

Cordoba, G.P., Zito, S., Tironi, A., Rahhal, V.F., Irassar, E.F. (2020). Durability of Concrete Containing Calcined Clays: Comparison of Illite and Low-Grade Kaolin. Calcined Clays for Sustainable Concrete. RILEM Book Series, 25, Springer, Singapore. doi:10.1007/978-981-15-2806-4_70.

Zemajtis, J.Z. (2014) Role of Concrete Curing. Portland Cement Association, Skokie, United States.

Higgins, D. (2007). Briefing: GGBS and sustainability. Proceedings of Institution of Civil Engineers: Construction Materials, 160(3), 99–101. doi:10.1680/coma.2007.160.3.99.

Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505–514. doi:10.1016/j.cemconcomp.2007.01.001.

Cementitious Slag Makers Association. (2012). What is Ground-granulated blast-furnace slag?, Cementitious Slag Makers Association, London, United Kingdom.

Concrete Society. (2011). Fly Ash or Pulverised Fly Ash. Concrete Society, Blackwater, United States.

Trischitta, P., Cosentini, R. M., Della Vecchia, G., Sanetti, G., & Musso, G. (2020). Preliminary investigation on the water retention behaviour of cement bentonite mixtures. E3S Web of Conferences, 195, 3032. doi:10.1051/e3sconf/202019503032.

TOLSA. (2008). Technical Data Sheet: Berkbent Bentonite 163. TOLSA, Madrid, Spain.

BS EN 197-1. (2019). Cement - Composition, specifications and conformity criteria for common cements. British Standard Institution, London, United Kingdom

BS 1377-5. (1990). Methods of test for Soils for civil engineering purposes – Part 5: Compressibility, permeability and durability tests. British Standard Institution, London, United Kingdom.

BS 1377-2. (1990). Methods of test for Soils for civil engineering purposes – Part 2: Classification tests. British Standard Institution, London, United Kingdom.

Casagrande, A. (1936). The Determination of the Pre-Consolidation Load and Its Practical Significance. Proceedings of the 1st International Conference on Soil Mechanics, 22-26 June, 1936, Harvard, United States.

Manassero, M., Fratalocchi, E., Pasqualini, E., Spanna, C., & Verga, F. (1995). Containment with vertical cutoff walls. Geoenvironment 2000: Characterization, Containment, Remediation, and Performance in Environmental Geotechnics, American Society of Civil Engineering, New York, United States.

Soga, K., Joshi, K., & Evans, J. (2013). Cement bentonite cutoff walls for polluted sites. Coupled Phenomena in Environmental Geotechnics, 149–165, CRC Press, Boca Raton, United States. doi:10.1201/b15004-15.

Barnes, G. (2010). Soil Mechanics: Principles and Practice. Palgrave Macmillan, London, United Kingdom.

Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. doi:10.1016/j.cemconres.2004.09.031.

Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons, New York, United States.

Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behaviour. John Wiley & Sons, New York, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2023-09-03-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Muhammad Akbar Walenna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message