Flood Sedimentology for Future Floods Mitigation in North Luwu, Sulawesi, Indonesia

Adi Maulana, Miswar Tumpu, Indah Putri Indriani, Iswandi Utama


A sedimentological study after the flash floods that hit North Luwu on July 13, 2020, has been carried out on three affected rivers, namely the Masamba River, the Radda River, and the Binuang River. The study aims to determine the sedimentological impact of the 2020 flash flood disaster, including sedimentation rate, annual bedload sediment volume, and total sediments, which will be used as a reference for future mitigation consideration. The study is based on fieldwork for data collection and laboratory analysis. The results of field measurements and laboratory analysis are then processed by calculating the sedimentation rate at the annual discharge, the bedload sediment volume, and the total estimated sediment accumulated by the flash flood. Sedimentation rate analysis was performed using the Ackers-White formula, and flood delineation was processed using HEC-RAS software. The climatological data from the climatology station at Andi Djemma Airport were used to calculate the river discharge. It is estimated that the volume of bedload sediment in the Binuang River is 16,194,168 m3/year, that of the Masamba River is 7,852,061 m3/year, and that of the Radda River is 4,003,011 m3/year. The volume of sediment brought by flash flood sedimentation in the Radda River is 9,141,608.39 m3, while that in the Masamba River is 55,131,761.29 m3, and that in the Binuang River is 136,838,603.61 m3. The total estimated sedimentation generated by the flash flood on the three rivers on July 13, 2020, is 222,476,966 m3. Based on the study, zonation for vulnerability levels is designed for a future mitigation scheme. The zonation can be classified into three zones: 1) the highly affected zone; 2) the moderately affected zone; and 3) the least affected zone, with special purposes in each zone. It is strongly recommended that future disaster settlement and infrastructure reconstruction policies be based on this zone to reduce disaster risk.


Doi: 10.28991/CEJ-2023-09-04-011

Full Text: PDF


Sedimentation; Flash Flood; Mitigation; North Luwu; South Sulawesi.


Ackers, P., & White, W. R. (1973). Sediment transport: new approach and analysis. Journal of the Hydraulics Division, 99(11), 2041-2060. doi:10.1061/JYCEAJ.0003791.

Maulana, A. (2019). Geological constraints for disaster mitigation model in South Sulawesi. Journal of Physics: Conference Series, 1341(5), 52004. doi:10.1088/1742-6596/1341/5/052004.

Ahilan, S., Guan, M., Wright, N., Sleigh, A., Allen, D., Arthur, S., Haynes, H., & Krivtsov, V. (2019). Modelling the long-term suspended sedimentological effects on stormwater pond performance in an urban catchment. Journal of Hydrology, 571, 805–818. doi:10.1016/j.jhydrol.2019.02.002.

Ahilan, S., Guan, M., Sleigh, A., Wright, N., & Chang, H. (2016). The influence of floodplain restoration on flow and sediment dynamics in an urban river. Journal of Flood Risk Management, 11(S2), 1-16. doi:10.1111/jfr3.12251.

Paredes, J. M., Ocampo, S. M., Foix, N., Olazábal, S. X., Valle, M. N., Montes, A., & Allard, J. O. (2021). Geomorphic and Sedimentological Impact of the 2017 Flash Flood Event in the City of Comodoro Rivadavia (Central Patagonia, Argentina). Advances in Geomorphology and Quaternary Studies in Argentina, Springer Earth System Sciences. Springer, Cham, Switzerland. doi:10.1007/978-3-030-66161-8_1.

Scorpio, V., Crema, S., Marra, F., Righini, M., Ciccarese, G., Borga, M., Cavalli, M., Corsini, A., Marchi, L., Surian, N., & Comiti, F. (2018). Basin-scale analysis of the geomorphic effectiveness of flash floods: A study in the northern Apennines (Italy). Science of the Total Environment, 640–641, 337–351. doi:10.1016/j.scitotenv.2018.05.252.

Righini, M., Surian, N., Wohl, E., Marchi, L., Comiti, F., Amponsah, W., & Borga, M. (2017). Geomorphic response to an extreme flood in two Mediterranean rivers (northeastern Sardinia, Italy): Analysis of controlling factors. Geomorphology, 290, 184–199. doi:10.1016/j.geomorph.2017.04.014.

Burke, L., & Spalding, M. (2022). Shoreline protection by the world’s coral reefs: Mapping the benefits to people, assets, and infrastructure. Marine Policy, 146, 105311. doi:10.1016/j.marpol.2022.105311.

Barkey, R. A., Malamassam, D., Mukhlisa, A. N., & Nursaputra, M. (2020, October). Land use planning for floods mitigation in Kelara Watershed, South Sulawesi Province, Indonesia. In IOP Conference Series: Earth and Environmental Science Vol. 575, 012132, IOP Publishing. doi:10.1088/1755-1315/575/1/012132.

Kubota, T., Sanchez-Castillo, L., & Soma, A. S. (2017). The Influence of Land Use and Rainfall on Shallow Landslides in Tanralili Sub–watershed, Indonesia. Journal of the Faculty of Agriculture, Kyushu University, 62(1), 171-176. doi:10.5109/1801778.

Montes, A., Rodríguez, S. S., & Domínguez, C. E. (2017). Geomorphology context and characterization of dune fields developed by the southern westerlies at drying Colhué Huapi shallow lake, Patagonia Argentina. Aeolian Research, 28, 58–70. doi:10.1016/j.aeolia.2017.08.001.

Montes, A., Rodríguez, S. S., San Martín, C. N., & Allard, J. O. (2015). Migration of dune fields in coastal canyons of Patagonia. Geomorphology and paleoclimatic implications. Revista de La Sociedad Geológica de España, 28(2), 65–76. (In Spanish).

Magilligan, F. J., Buraas, E. M., & Renshaw, C. E. (2014). The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding. Geomorphology, 228, 175–188. doi:10.1016/j.geomorph.2014.08.016.

Hooke, J. M. (2015). Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management. Geomorphology, 251, 91–107. doi:10.1016/j.geomorph.2015.05.014.

Hirtz, N. R., & Grizinik, M. (2017). The low flood in the southwest of the city: its evolution from salinization to the flood of March-April 2017. Paredes JM (comp) Comodoro Rivadavia y la catástrofe de, 49-59. (In Spanish).

Hernández, M. A., González, N., & Hernández, L. (2017). Hydrogeology of a Large Oil-and-Gas Basin in Central Patagonia: San Jorge Gulf Basin, Argentina. Springer, Cham, Switzerland. doi:10.1007/978-3-319-52328-6.

Grove, J. R., Croke, J., & Thompson, C. (2013). Quantifying different riverbank erosion processes during an extreme flood event. Earth Surface Processes and Landforms, 38(12), 1393–1406. doi:10.1002/esp.3386.

Froude, M. J., Alexander, J., Barclay, J., & Cole, P. (2017). Interpreting flash flood palaeoflow parameters from antidunes and gravel lenses: An example from Montserrat, West Indies. Sedimentology, 64(7), 1817–1845. doi:10.1111/sed.12375.

Belletti, B., Dufour, S., & Piégay, H. (2014). Regional assessment of the multi-decadal changes in braided rivers capes following large floods (example of 12 reaches in South East of France). Advances in Geosciences, 37, 57–71. doi:10.5194/adgeo-37-57-2014.

Alexander, J., & Cooker, M. J. (2016). Moving boulders in flash floods and estimating flow conditions using boulders in ancient deposits. Sedimentology, 63(6), 1582–1595. doi:10.1111/sed.12274.

Archer, D. R., & Fowler, H. J. (2018). Characterizing flash flood response to intense rainfall and impacts using historical information and gauged data in Britain. Journal of Flood Risk Management, 11, S121–S133. doi:10.1111/jfr3.12187.

Paski, J. A. I., Makmur, E. E. S., Permana, D. S., Nurrahmat, M. H., Praja, A. S., Riama, N. F., & Fitria, W. (2021). Analysis of Multi-Scale Hydrometeorological Triggering Flash Flood Event of the 13 July 2020 in North Luwu, South Sulawesi. IOP Conference Series: Earth and Environmental Science Vol. 893, 012014, IOP Publishing. doi:10.1088/1755-1315/893/1/012014.

Yulihastin, E., Nuryanto, D. E., & Muharsyah, R. (2021). Improvement of Heavy Rainfall Simulated with SST Adjustment Associated with Mesoscale Convective Complexes Related to Severe Flash Flood in Luwu, Sulawesi, Indonesia. Atmosphere, 12(11), 1445. doi:10.3390/atmos12111445.

Thaha, R. ., & Drajat, U. Z. (2023). The Analysis of Post-Flood Disaster Management at North Luwu Regency. International Journal Papier Public Review, 4(1), 51-59. doi:10.47667/ijppr.v4i1.198.

Simandjuntak, T.O., Rusmana, E., Surono dan Supandjono, J.B. (1991). Peta Geologi Lembar Malili, Sulawesi, scale 1: 250.000. Pusat Penelitian dan Pengembangan, Jakarta, Indonesia.

Buchanan, J. B. (1984). Sediment analysis. Methods for the Study of Marine Benthos. Blackwell Scientific Publications, Hoboken, United States.

Brunner, G. W. (2002). HEC-RAS river analysis system: User's manual. Institute for Water Resources, Hydrologic Engineering Center, US Army Corps of Engineers, Washington, United States.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-04-011


  • There are currently no refbacks.

Copyright (c) 2023 Adi Maulana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.