Using FEM-AI Technique to Predict the Behavior of Strip Footing Rested on Undrained Clay Layer Improved with Replacement and Geo-Grid

Ahmed M. Ebid, Kennedy C. Onyelowe, Mohamed Salah, Edward I. Adah


The objective of this research is to predict how strip footings behave when rested on an undrained clay layer enhanced using a top replacement layer with and without a geo-grid. The study was conducted in several stages, including collecting load-settlement curves from "Finite Element Method" (FEM) models with different clay strengths, replacement thicknesses, and axial stiffnesses of the geo-grid. These curves were then idealized using a hyperbolic model, and the idealized hyperbolic parameters were predicted using three different AI techniques. According to the numerical results, the ultimate bearing pressure of pure clay models was found to be five times the undrained strength of the clay. These findings align with most established empirical bearing capacity formulas for undrained clays. The results also suggest that the initial modulus of the subgrade reaction is solely influenced by replacement thickness. Additionally, the enhancement in subgrade reaction due to the replacement layer decreases with increasing clay strength. However, the percentage of improvement decreased with higher clay strength. Moreover, the impact of the geo-grid was significant for settlement beyond 50mm, and it was more impactful in soft clay than in stiff clay. Finally, the research proposed predictive models employing the "Genetic Programming" (GP), "Artificial Neural Networks" (ANN), and "Evolutionary Polynomial Regression" (EPR) techniques, and these models exhibited an accuracy of about 88%.


Doi: 10.28991/CEJ-2023-09-05-014

Full Text: PDF


Strip Footing; Undrained Clay; Geo-Grid; FEM; AI; Subgrade Reaction.


Craig, R. F. (1994). Soil Mechanics. Chapman & Hall, London, United Kingdom.

Kelsey, C. (2014). A brief history of geotextile. Land and Water: Geotextiles, 1-6. Available online: (accessed on April 2023).

Henry, K. S., & Stormont, J. C. (2002). Geocomposite capillary barrier drain for limiting moisture changes in pavement subgrades and base courses. No. NCHRP-IDEA Project 68, Transportation Research Board, Washington, United States.

McCartney, J. S., Kuhn, J. A., & Zornberg, J. G. (2005). Geosynthetic drainage layers in contact with unsaturated soils. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. doi:10.3233/978-1-61499-656-9-2301.

Zornberg, J. G. (1994). Performance of geotextile-reinforced soil structures. Ph.D. Thesis, University of California, Berkeley, United States.

Zornberg, J. G., & Thompson, N. (2012). Application guide and specifications for geotextiles in roadway applications. No. FHWA/TX-10/0-5812-1, Center for Transportation Research, University of Texas, Austin, United States.

Ziegler, M. (2017). Application of Geogrid Reinforced Constructions: History, Recent and Future Developments. Procedia Engineering, 172, 42–51. doi:10.1016/j.proeng.2017.02.015.

Balaji, D. S., Vinodhkumar, S., & Ridhuvarsine, R. G. (2019). Applications and Performance of Geogrids in Structures. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 5495–5500. doi:10.35940/ijrte.d8831.118419.

Das, B. M., Shin, E. C., & Omar, M. T. (1994). The bearing capacity of surface strip foundations on geogrid-reinforced sand and clay - a comparative study. Geotechnical and Geological Engineering, 12(1), 1–14. doi:10.1007/BF00425933.

Arvin, M. R., Askari, F., & Farzaneh, O. (2012). Static and dynamic bearing capacity of strip footings, under variable repeated loading. Turkish Journal of Engineering and Environmental Sciences, 36(1), 19–31. doi:10.3906/muh-1011-22.

Gnananandarao, T., Khatri, V. N., & Dutta, R. K. (2020). Bearing capacity and settlement prediction of multi-edge skirted footings resting on sand. Ingenieria e Investigacion, 40(3), 9–21. doi:10.15446/ing.investig.v40n3.83170.

Ebid, A. M., Onyelowe, K. C., & Arinze, E. E. (2021). Estimating the Ultimate Bearing Capacity for Strip Footing Near and within Slopes Using AI (GP, ANN, and EPR) Techniques. Journal of Engineering, 2021, 1–11. doi:10.1155/2021/3267018.

Ebid, A. M., Onyelowe, K. C., & Salah, M. (2022). Estimation of Bearing Capacity of Strip Footing Rested on Bilayered Soil Profile Using FEM-AI-Coupled Techniques. Advances in Civil Engineering, 2022, 1–11. doi:10.1155/2022/8047559.

Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage learning, Boston, United States.

Christopher, B. R., Hayden, S. A., & Shao, A. (2000). Roadway base and subgrade geocomposite drainage layers. No. STP 1390, American Society for Testing and Materials (ASTM), Pennsylvania, United States.

Biswas, A., Asfaque Ansari, M., Dash, S. K., & Murali Krishna, A. (2015). Behavior of Geogrid Reinforced Foundation Systems Supported on Clay Subgrades of Different Strengths. International Journal of Geosynthetics and Ground Engineering, 1(3). doi:10.1007/s40891-015-0023-5.

Aboelela, A. E., Ebid, A. M., & Fayed, A. L. (2022). Estimating the subgrade reaction at deep braced excavation bed in dry granular soil using genetic programming (GP). Results in Engineering, 13. doi:10.1016/j.rineng.2021.100328.

Onyelowe, K. C., Aneke, F. I., Onyia, M. E., Ebid, A. M., & Usungedo, T. (2022). AI (ANN, GP, and EPR)-based predictive models of bulk density, linear-volumetric shrinkage & desiccation cracking of HSDA-treated black cotton soil for sustainable subgrade. Geomechanics and Geoengineering, 1–20. doi:10.1080/17486025.2022.2090621.

Kazi, M., Shukla, S. K., & Habibi, D. (2016). Behaviour of an embedded footing on geotextile-reinforced sand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 169(2), 120–133. doi:10.1680/grim.14.00022.

Moghaddas Tafreshi, S. N., Joz Darabi, N., Tavakoli Mehrjardi, G., & Dawson, A. (2019). Experimental and numerical investigation of footing behaviour on multi-layered rubber-reinforced soil. European Journal of Environmental and Civil Engineering, 23(1), 29–52. doi:10.1080/19648189.2016.1262288.

Mahdi, H. A., Ebid, A. M., Onyelowe, K. C., & Nwobia, L. I. (2022). Predicting the behaviour of laterally loaded flexible free head pile in layered soil using different AI (EPR, ANN and GP) techniques. Multiscale and Multidisciplinary Modeling, Experiments and Design, 5(3), 225–242. doi:10.1007/s41939-021-00114-5.

Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Waterman, D., Chesaru, A., & Bonnier, P. G. (2016). PLAXIS 2016. Pennsylvania, United States.

Potts, D. M., & Zdravković, L. (2001). Finite Element Analysis in Geotechnical Engineering: Volume two - Application. Thomas Telford, London, United Kingdom. doi:10.1680/feaigea.27831.

Bartlett, S. T. (2010). Numerical methods in geotechnical engineering. Course notes, University of Utah, Salt Lake City, United States.

Aneke, F. I., Onyelowe, K. C., Ebid, A. M., Nwobia, L. I., & Adu, J. T. (2022). Predictive models of swelling stress—a comparative study between BP- and GRG-ANN. Arabian Journal of Geosciences, 15(17). doi:10.1007/s12517-022-10706-1.

El-Bosraty, A. H., Ebid, A. M., & Fayed, A. L. (2020). Estimation of the undrained shear strength of east Port-Said clay using the genetic programming. Ain Shams Engineering Journal, 11(4), 961–969. doi:10.1016/j.asej.2020.02.007.

Giustolisi, O., & Savic, D. A. (2006). A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8(3), 207–222. doi:10.2166/hydro.2006.020b.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-014


  • There are currently no refbacks.

Copyright (c) 2023 Ahmed M. Ebid, Kennedy C. Onyelowe, Mohamed Salah, Edward I Adah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.