Shear Strength of Reinforced Concrete Squat Walls

Ahmed Faleh Al-Bayati


Squat shear walls are widely used in various structures to resist earthquake loads. However, the relevant design expressions found in building codes and literature do not incorporate the influence of all crucial parameters and provide inconsistent peak shear strength estimations. This study adopts the artificial neural network (ANN) to predict the peak shear strength of squat walls using an extensive database that includes the results of 487 walls with wide-ranging test parameters. The ANN models consider the effect of concrete strength, the wall aspect ratio, vertical and horizontal reinforcements, vertical reinforcement of boundary elements, and axial load ratio. These accurately predicted the available test results. They implemented it to carry out parametric and sensitivity analysis to investigate the effect of the main parameters on the peak strength and to give information about the factors that contribute most to the shear response. In addition, a softened strut and tie method is proposed, considering the variables that substantially influence the shear strength. A nonlinear regression analysis is employed to determine the coefficients of the proposed model using the available database. The performance of the proposed model is measured using the existing models, which results in the best favorable agreement with the test results.


Doi: 10.28991/CEJ-2023-09-02-03

Full Text: PDF


Reinforced Concrete; Squat Walls; Seismic Design; Artificial Neural Network; Strut and Tie Method.


Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings (Vol. 768). Wiley, New York, United States. doi:10.1002/9780470172841.

Terzioglu, T., Orakcal, K., & Massone, L. M. (2018). Cyclic lateral load behavior of squat reinforced concrete walls. Engineering Structures, 160, 147–160. doi:10.1016/j.engstruct.2018.01.024.

Gulec, C. K., & Whittaker, A. S. (2009). Performance-based assessment and design of squat reinforced concrete shear walls. Technical Report MCEER-09-0010, State University of New York, Buffalo, United States.

Cortés-Puentes, W. L., & Palermo, D. (2018). Performance of pre-1970s squat reinforced concrete shear walls. Canadian Journal of Civil Engineering, 45(11), 922–935. doi:10.1139/cjce-2017-0595.

Gulec, C. K., Whittaker, A. S., & Stojadinovic, B. (2008). Shear strength of squat rectangular reinforced concrete walls. ACI Structural Journal, 105(4), 488–497. doi:10.14359/19863.

Benjamin, J. R., & Williams, H. A. (1957). The Behavior of One-Story Reinforced Concrete Shear Walls. Journal of the Structural Division, 83(3). doi:10.1061/jsdeag.0000118.

Cardenas, A. E., Hanson, J. M., Corley, W. G., & Hognestad, E. (1973). Design provisions for shear walls. ACI Journal, 70(3), 221-230. doi:10.14359/11201.

Paulay, T., Priestley, M. J. N., & Synge, A. J. (1982). Ductility in Earthquake Resisting Squat Shear walls. Journal of the American Concrete Institute, 79(4), 257–269. doi:10.14359/10903.

Shaingchin, S., Lukkunaprasit, P., & Wood, S. L. (2007). Influence of diagonal web reinforcement on cyclic behavior of structural walls. Engineering Structures, 29(4), 498–510. doi:10.1016/j.engstruct.2006.05.016.

Cheng, M. Y., Wibowo, L. S. B., Giduquio, M. B., & Lequesne, R. D. (2021). Strength and deformation of reinforced concrete squat walls with high-strength materials. ACI Structural Journal, 118(1), 125–137. doi:10.14359/51728082.

Kim, J. H., & Park, H. G. (2022). Shear Strength of Flanged Squat Walls with 690 MPa Reinforcing Bars. ACI Structural Journal, 119(2), 209–220. doi:10.14359/51734142.

Chandra, J., Chanthabouala, K., & Teng, S. (2018). Truss model for shear strength of structural concrete walls. ACI Structural Journal, 115(2), 323–335. doi:10.14359/51701129.

Sivaguru, V., & Rao, G. A. (2021). Strength and behavior of reinforced concrete squat shear walls with openings under cyclic loading. ACI Structural Journal, 118(5), 235–250. doi:10.14359/51732832.

Kassem, W. (2015). Shear strength of squat walls: A strut-and-tie model and closed-form design formula. Engineering Structures, 84, 430–438. doi:10.1016/j.engstruct.2014.11.027.

Wood, S. L. (1990). Shear strength of low-rise reinforced concrete walls. Structural Journal, 87(1), 99-107. doi:10.14359/2951.

Snchez-Alejandre, A., & Alcocer, S. M. (2010). Shear strength of squat reinforced concrete walls subjected to earthquake loading trends and models. Engineering Structures, 32(8), 2466–2476. doi:10.1016/j.engstruct.2010.04.022.

Gulec, C. K., & Whittaker, A. S. (2011). Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls. ACI Structural Journal, 108(1), 80-89. doi:10.14359/51664205.

Hsu, T. T. C., & Mo, Y. L. (1985). Softening of Concrete in Low-Rise Shear walls. Journal of the American Concrete Institute, 82(6), 883–889. doi:10.14359/10410.

Massone, L. M., & Melo, F. (2018). General solution for shear strength estimate of RC elements based on panel response. Engineering Structures, 172, 239–252. doi:10.1016/j.engstruct.2018.06.038.

Hwang, S.-J., Fang, W.-H., Lee, H.-J., & Yu, H.-W. (2001). Analytical Model for Predicting Shear Strength of Squat Walls. Journal of Structural Engineering, 127(1), 43–50. doi:10.1061/(asce)0733-9445(2001)127:1(43).

Hwang, S.-J., & Lee, H.-J. (2002). Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model. Journal of Structural Engineering, 128(12), 1519–1526. doi:10.1061/(asce)0733-9445(2002)128:12(1519).

Ma, J. X., Chen, K. Y., Wang, Y. H., & Li, B. (2021). Peak shear strength of J-shaped reinforced concrete squat walls. Gongcheng Lixue/Engineering Mechanics, 38(4), 123–135. doi:10.6052/j.issn.1000-4750.2020.05.0337.

Chetchotisak, P., Chomchaipol, W., Teerawong, J., & Shaingchin, S. (2022). Strut-and-tie model for predicting shear strength of squat shear walls under earthquake loads. Engineering Structures, 256, 114042. doi:10.1016/j.engstruct.2022.114042.

Chen, X. L., Fu, J. P., Yao, J. L., & Gan, J. F. (2018). Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Engineering with Computers, 34(2), 367–383. doi:10.1007/s00366-017-0547-5.

Baghi, H., Baghi, H., & Siavashi, S. (2019). Novel empirical expression to predict shear strength of reinforced concrete walls based on particle swarm optimization. ACI Structural Journal, 116(5), 247–260. doi:10.14359/51716773.

Gondia, A., Ezzeldin, M., & El-Dakhakhni, W. (2020). Mechanics-Guided Genetic Programming Expression for Shear-Strength Prediction of Squat Reinforced Concrete Walls with Boundary Elements. Journal of Structural Engineering, 146(11), 4020223. doi:10.1061/(asce)st.1943-541x.0002734.

Tariq, M., Khan, A., Ullah, A., Zamin, B., Kashyzadeh, K. R., & Ahmad, M. (2022). Gene Expression Programming for Estimating Shear Strength of RC Squat Wall. Buildings, 12(7), 918. doi:10.3390/buildings12070918.

Feng, D.-C., Wang, W.-J., Mangalathu, S., & Taciroglu, E. (2021). Interpretable XGBoost-SHAP Machine-Learning Model for Shear Strength Prediction of Squat RC Walls. Journal of Structural Engineering, 147(11), 4021173. doi:10.1061/(asce)st.1943-541x.0003115.

Parsa, P., & Naderpour, H. (2021). Shear strength estimation of reinforced concrete walls using support vector regression improved by Teaching–learning-based optimization, Particle Swarm optimization, and Harris Hawks Optimization algorithms. Journal of Building Engineering, 44, 102593. doi:10.1016/j.jobe.2021.102593.

Beale, M. H., Hagan, M. T., & Demuth, H. B. (2010). Neural network toolbox. User’s Guide, MathWorks, Three Apple Hill Drive Natick, United States.

Onyelowe, K. C., Gnananandarao, T., Ebid, A. M., Mahdi, H. A., Razzaghian Ghadikolaee, M., & Al-Ajamee, M. (2022). Evaluating the Compressive Strength of Recycled Aggregate Concrete Using Novel Artificial Neural Network. Civil Engineering Journal, 8(8), 1679–1693. doi:10.28991/CEJ-2022-08-08-011.

Al-Rawashdeh, M., Yousef, I., & Al-Nawaiseh, M. (2022). Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network. Civil Engineering Journal, 8(6), 1178–1193. doi:10.28991/CEJ-2022-08-06-07.

Mansour, M. Y., Dicleli, M., & Lee, J. Y. (2004). Nonlinear Analysis of R/C Low-Rise Shear Walls. Advances in Structural Engineering, 7(4), 345–361. doi:10.1260/1369433041653525.

Smith, G. N. (1986). Probability and statistics in civil engineering. Collins professional and technical books, New York, United States.

Safiee, N. A., & Ashour, A. (2017). Prediction of punching shear capacity of RC flat slabs using artificial neural network. Asian Journal of Civil Engineering, 18(2), 285–309.

ACI 318-19. (2019). Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, United States.

EN1998-1. (2004). Design for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.

Barda, F. (1972). Shear strength of low-rise walls with boundary elements. Ph.D. Thesis, Lehigh University, Bethlehem, United States.

Maier, J., & Thürlimann, B. (1985). Fracture tests on reinforced concrete discs. Report/Institute for Structural Analysis and Construction ETH Zurich, Zurich, Switzerland. (In German). doi:10.1007/978-3-0348-5190-9.

Lefas, I. D., & Kotsovos, M. D. (1990). Strength and deformation characteristics of reinforced concrete walls under load reversals. ACI Structural Journal, 87(6), 716–726. doi:10.14359/2994.

Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4), 46-51.

Krolicki, J., Maffei, J., & Calvi, G. M. (2011). Shear Strength of Reinforced Concrete Walls Subjected to Cyclic Loading. Journal of Earthquake Engineering, 15(sup1), 30–71. doi:10.1080/13632469.2011.562049.

Model Code 2010. (2010). Fib Bulletin 65/66. Federation Internationale Du Beton. Lausanne, Switzerland.

Pauletta, M., Di Luca, D., & Russo, G. (2015). Exterior beam column joints - Shear strength model and design formula. Engineering Structures, 94, 70–81. doi:10.1016/j.engstruct.2015.03.040.

Russo, G., Venir, R., & Pauletta, M. (2005). Reinforced concrete deep beams - Shear strength model and design formula. ACI Structural Journal, 102(3), 429–437. doi:10.14359/14414.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-02-03


  • There are currently no refbacks.

Copyright (c) 2023 Ahmed Faleh Al-Bayati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.