Greywater Flow Characteristics for Closed Channel Maintenance

Ratna Bachrun, . Santi, Surya Baskara


Knowing the characteristics of wastewater and its interaction with the channel is crucial to finding a suitable model and maintenance method to solve the closed channel problem. The purpose of this study is to find the relationship and how much it influences the characteristics of wastewater in closed channels and analyze the limit deposit velocity (LDV) of wastewater so that there is no deposition. The parameters used to analyze wastewater characteristics are density, oil and fat, specific gravity, total suspended solids, total dissolved solids, and kinematic viscosity. The parameters used to analyze the flow characteristics in closed channels are velocity, discharge, Reynolds number, friction coefficient, energy loss, and hydraulic gradient. The method used is experimental research by simulating a closed-channel model prototype. The closed channel model is made from an acrylic pipe with a length of 6 m and a pipe diameter of 0.064 m. Simulations on each wastewater sample and the discharge variations used were 0.005, 0.004, 0.003, and 0.0015 m3/s. Velocity measurements at a 0.5 pipe water level height and distances of 0, 2, 4, and 6 m. The results showed that the nature and composition of the wastewater the flow velocity. The large value of wastewater parameters shows that the flow velocity is small. The wastewater content is considered a load that must be transported to the end of the closed channel. When the discharge increases, the velocity will increase, Reynolds number will increase, and the energy loss will be large, while the friction coefficient is inversely proportional to Reynolds number. The velocities of clean water samples are 2.90 - 1.07 m/s, tofu - making is 2.83 - 1.07 m/s, household is 2.74 - 0.85 m/s, laundry is 2.84 - 1.03 m/s, and the workshop is 2.54 - 0.66 m/s. The limit deposit velocity (LDV) for household wastewater is 1.49 m/s to prevent deposition in closed channels.


Doi: 10.28991/CEJ-2023-09-01-03

Full Text: PDF


Discharge; Velocity; Closed Channel; Wastewater; Greywater.


Asmadi, S., Si, M., Suharno, S. K. M., & Kes, M. (2012). Fundamentals of Wastewater Treatment Technology. Gosyen Publishing, Yogyakarta, Indonesia. (In Indonesian).

Hu, M., Hu, H., Ye, Z., Tan, S., Yin, K., Chen, Z., ... & Hu, Z. T. (2022). A review on turning sewage sludge to value-added energy and materials via thermochemical conversion towards carbon neutrality. Journal of Cleaner Production, 134657. doi:10.1016/j.jclepro.2022.134657.

Fu, T., Xu, C., Yang, L., Hou, S., & Xia, Q. (2022). Measurement and driving factors of grey water footprint efficiency in Yangtze River Basin. Science of the Total Environment, 802, 149587. doi:10.1016/j.scitotenv.2021.149587.

Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1), 85–104. doi:10.1016/S1462-0758(01)00064-4.

Arifin, S. N. H., Radin Mohamed, R. M. S., Ismail, N. R., Al-Gheethi, A., & Bakar, S. A. (2020). Effects of direct discharge of domestic greywater to nearby water body. Materials Today: Proceedings, 31, A126–A136. doi:10.1016/j.matpr.2021.01.038.

Dwumfour-Asare, B., Nyarko, K. B., Essandoh, H. M. K., & Awuah, E. (2020). Domestic greywater flows and pollutant loads: A neighbourhood study within a university campus in Ghana. Scientific African, 9, 489. doi:10.1016/j.sciaf.2020.e00489.

Shaikh, I. N., & Ahammed, M. M. (2020). Quantity and quality characteristics of greywater: A review. Journal of Environmental Management, 261, 110266. doi:10.1016/j.jenvman.2020.110266.

Khotimah, S. N., Anisa Mardhotillah, N., Arifaini, N., & Sumiharni. (2021). Karakterisasi Limbah Cair Greywater pada level Rumah Tangga Berdasarkan Sumber Emisi. Jurnal Saintis, 21(02), 71–78. doi:10.25299/saintis.2021.vol21(02).7876. (In Indonesian).

Pambudi, Y. S., Sudaryantiningsih, C., & Geraldita, G. (2021). Analisis Karakteristik Air Limbah Industri Tahu dan Alternatif Proses Pengolahannya Berdasarkan Prinsip-Prinsip Teknologi Tepat Guna. Syntax Literate; Jurnal Ilmiah Indonesia, 6(8), 4180-4192. (In Indonesian).

Suryo Purnomo, Y., & Wijayanti, F. D. (2021). Pengolahan Limbah Cair Bengkel Dengan Menggunakan Grease Trap Dan Fitoremediasi. EnviroUS, 2(1), 114–122. doi:10.33005/envirous.v2i1.87. (In Indonesian).

Nurhidayanti, N., Ilyas, N. I., & Lazuardini, D. P. (2022). Studi Pengolahan Limbah Cair Laundry menggunakan Serbuk Biji Asam Jawa sebagai Biokoagulan. Jurnal Tekno Insentif, 16(1), 16–27. doi:10.36787/jti.v16i1.453. (In Indonesian).

Ota, J. J., & Perrusquía, G. S. (2013). Particle velocity and sediment transport at the limit of deposition in sewers. Water Science and Technology, 67(5), 959–967. doi:10.2166/wst.2013.646.

Banasiak, R. (2008). Hydraulic performance of sewer pipes with deposited sediments. Water Science and Technology, 57(11), 1743–1748. doi:10.2166/wst.2008.287.

Nursiani, T., Putra, Y. S., & Muhardi, M. (2020). Studi Ukuran Diameter Butir Sedimen Dasar terhadap Kecepatan Arus di Sungai Pawan Kabupaten Ketapang. Prisma Fisika, 8(1), 17. doi:10.26418/pf.v8i1.39868. (In Indonesian).

Lahlou, F. Z., Mackey, H. R., & Al-Ansari, T. (2022). Role of wastewater in achieving carbon and water neutral agricultural production. Journal of Cleaner Production, 130706. doi:10.1016/j.jclepro.2022.130706.

Kim, C., Lee, M., & Han, C. (2008). Hydraulic transport of sand-water mixtures in pipelines Part I. Experiment. Journal of Mechanical Science and Technology, 22(12), 2534–2541. doi:10.1007/s12206-008-0811-0.

Zhu, Y., Hu, D., Li, C., Zhuang, C., & Yang, G. (2021). CFD-DEM simulation of the hydrodynamic filtration performance in balaenid whale filter feeding. Science of The Total Environment, 787, 147696. doi:10.1016/j.scitotenv.2021.147696.

Bachrun, R., Pallu, M. S., Thaha, M. A., & Bakri, B. (2020). Effect of water discharge variation on water levels and flow characteristics in pipeline networks. IOP Conference Series: Earth and Environmental Science, 419(1), 12134. doi:10.1088/1755-1315/419/1/012134.

Bachrun, R., Pallu, M. S., Thaha, M. A., & Bakri, B. (2021). The effect of discharge on head loss with straight and bend flow directions in the pipeline. IOP Conference Series: Earth and Environmental Science, 841(1), 12017. doi:10.1088/1755-1315/841/1/012017.

Montes, C., Kapelan, Z., & Saldarriaga, J. (2021). Predicting non-deposition sediment transport in sewer pipes using Random forest. Water Research, 189, 116639. doi:10.1016/j.watres.2020.116639.

Triatmodjo, B. (1996). Hydraulics I. Beta Offset, Yogyakarta, Indonesia. (In Indonesian).

Xianbei, H., Qiang, G., Tao, F., Xurui, C., & Baoyun, Q. (2022). Air-entrainment in hydraulic intakes with a vertical pipe: The mechanism and influence of pipe offset. International Journal of Multiphase Flow, 146, 103866. doi:10.1016/j.ijmultiphaseflow.2021.103866.

Nosrati, K., Tahershamsi, A., & Seyed Taheri, S. H. (2017). Numerical Analysis of Energy Loss Coefficient in Pipe Contraction Using ANSYS CFX Software. Civil Engineering Journal, 3(4), 288–300. doi:10.28991/cej-2017-00000091.

Kumar, U., Mishra, R., Singh, S. N., & Seshadri, V. (2003). Effect of particle gradation on flow characteristics of ash disposal pipelines. Powder Technology, 132(1), 39–51. doi:10.1016/S0032-5910(03)00045-7.

Ting, X., Xinzhuo, Z., Miedema, S. A., & Xiuhan, C. (2019). Study of the characteristics of the flow regimes and dynamics of coarse particles in pipeline transportation. Powder Technology, 347, 148–158. doi:10.1016/j.powtec.2019.02.031.

Vlasak, P., & Chara, Z. (2011). Effect of particle size distribution and concentration on flow behavior of dense slurries. Particulate Science and Technology, 29(1), 53–65. doi:10.1080/02726351.2010.508509.

Bachrun, R., Pallu, M. S., Thaha, M. A., & Bakri, B. (2021). Experimental study on characteristic of slurry flow regime in pipeline. International Journal of Engineering Trends and Technology, 69(7), 69–75. doi:10.14445/22315381/IJETT-V69I7P210.

Liu, H. (2003). Pipeline Engineering. Lewis Publishers, Boca Raton, United States. doi:10.1201/9780203506684.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-03


  • There are currently no refbacks.

Copyright (c) 2023 Ratna Bachrun, Santi Santi, Surya Baskara

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.