Extreme Event-based Rainfall-runoff Simulation Utilizing GIS Techniques in Irawan Watershed, Palawan, Philippines

Jennifer C. Cacal, Victor Czar A. Austria, Evelyn B. Taboada


River flow assessments and ecologically sustainable water management plans are now possible due to the advancement of sophisticated computer models. The US Army Corps of Engineers developed the HEC-HMS model, which can be used for various hydrological simulations. Rainfall-runoff modeling aids in estimating peak flows, which is critical for water resource management planning. On December 18, 2017, a heavy rainfall event in the ungauged Irawan basin in Puerto Princesa City, Palawan, Philippines, was simulated to determine the peak flow and amount of water. The current research aims to construct a rainfall-runoff simulation model. A specific hyetograph is used to make the hydrographs for the basin. This study utilizes ArcGIS and QGIS, which perform the geospatial analysis and provide the HEC-HMS model's hydrologic modeling inputs. The hydrological parameters were determined using soil type, land use, and land cover maps. Incorporating SCS loss, Clark unit hydrograph, and Muskingum flow routing, HEC-HMS was employed in the rainfall-runoff simulation. Rainfall data corresponding to the recorded streamflow was used to calibrate and validate the parameters. Several performance metrics, including Nash-Sutcliffe efficiency (NSE) and Percentage Bias (PBIAS), were utilized to evaluate the overall effectiveness of the system. An effective decision-making and warning system can be implemented using the developed model.


Doi: 10.28991/CEJ-2023-09-01-017

Full Text: PDF


Runoff; Rainfall, Hydrograph; Watershed; HEC-HMS; IWRM.


World Water Development Report (WWDR). (2012). Managing water under uncertainty and risk. UNESCO (United Nations Educational, Scientific and Cultural Organization), Paris, France.

Rouf, T. (2015). Flood Inundation Map of Sirajgonj District Using Mathematical Model. Master Thesis, Bangladesh University of Engineering and technology, Dhaka, Bangladesh.

Valenzuela, V. P. B., Esteban, M., Takagi, H., Thao, N. D., & Onuki, M. (2020). Disaster awareness in three low risk coastal communities in Puerto Princesa City, Palawan, Philippines. International Journal of Disaster Risk Reduction, 46(September), 101508–101508. doi:10.1016/j.ijdrr.2020.101508.

Jeshyl, G. (2021). Puerto Princesa gets flooded again due to flawed drainage system. Puerto Princesa City, Philippines.

Paul, G., Bertule, M., Taylor, P., Bjørnsen, P. K., Lloyd, G. J., Hansted, N. G., ... & Takane, M. (2018). Progress on Integrated Water Resources Management: Global Baseline for SDG 6 Indicator 6.5.1-Degree of IWRM Implementation. United nations Environmental Programme, UN-Water, Geneva, Switzerland.

Niyazi, B. A., Masoud, M. H., Ahmed, M., Basahi, J. M., & Rashed, M. A. (2020). Runoff assessment and modeling in arid regions by integration of watershed and hydrologic models with GIS techniques. Journal of African Earth Sciences, 172, 103966. doi:10.1016/j.jafrearsci.2020.103966.

Vojtek, M., & Vojteková, J. (2016). Flood hazard and flood risk assessment at the local spatial scale: a case study. Geomatics, Natural Hazards and Risk, 7(6), 1973–1992. doi:10.1080/19475705.2016.1166874.

Elfeki, A., Masoud, M., & Niyazi, B. (2017). Integrated rainfall–runoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabia. Natural Hazards, 85(1), 87–109. doi:10.1007/s11069-016-2559-7.

Abdulrazzak, M., Elfeki, A., Kamis, A., Kassab, M., Alamri, N., Chaabani, A., & Noor, K. (2019). Flash flood risk assessment in urban arid environment: case study of Taibah and Islamic universities’ campuses, Medina, Kingdom of Saudi Arabia. Geomatics, Natural Hazards and Risk, 10(1), 780–796. doi:10.1080/19475705.2018.1545705.

Grimaldi, S., Petroselli, A., Arcangeletti, E., & Nardi, F. (2013). Flood mapping in ungauged basins using fully continuous hydrologic-hydraulic modeling. Journal of Hydrology, 487, 39–47. doi:10.1016/j.jhydrol.2013.02.023.

Farooq, M., Shafique, M., & Khattak, M. S. (2019). Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Natural Hazards, 97(2), 477–492. doi:10.1007/s11069-019-03638-9.

Seibert, J. (1999). Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology, 98–99, 279–293. doi:10.1016/S0168-1923(99)00105-7.

Nyaupane, N., Thakur, B., Kalra, A., & Ahmad, S. (2018). Evaluating future flood scenarios using CMIP5 climate projections. Water (Switzerland), 10(12), 1–18. doi:10.3390/w10121866.

Pathak, P., Kalra, A., & Ahmad, S. (2017). Temperature and precipitation changes in the Midwestern United States: implications for water management. International Journal of Water Resources Development, 33(6), 1003–1019. doi:10.1080/07900627.2016.1238343.

Jobe, A., Kalra, A., & Ibendahl, E. (2018). Conservation Reserve Program effects on floodplain land cover management. Journal of Environmental Management, 214, 305–314. doi:10.1016/j.jenvman.2018.03.016.

Thakali, R., Kalra, A., Ahmad, S., & Qaiser, K. (2018). Management of an Urban Storm water System Using Projected Future Scenarios of Climate Models: A Watershed-Based Modeling Approach. Open Water Journal, 5(2), 1.

Tamaddun, K., Kalra, A., & Ahmad, S. (2018). Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions. Journal of Arid Land, 10(1), 68–83. doi:10.1007/s40333-017-0110-7.

Rauf, A.U., & Ghumman, A. R. (2018). Impact assessment of rainfall-runoff simulations on the flow duration curve of the Upper Indus river- A comparison of data-driven and hydrologic models. Water (Switzerland), 10(7), 876–876. doi:10.3390/w10070876.

Youssef, A. M. A., Ibrahem, S. M. M., El Sayed, A. N., & Masoud, M. H. Z. (2020). Assessment and management of water resources in Wadi El-Deeb using geophysical, hydrological and GIS techniques-Red Sea. Journal of African Earth Sciences, 164, 103777–103777. doi:10.1016/j.jafrearsci.2020.103777.

Nikolaos, S., Kleomenis, K., Elias, D., Panagiotis, S., Panagiota, L., Vagelis, P., & Christos, C. (2019). A Robust Remote Sensing–Spatial Modeling–Remote Sensing (R-M-R) Approach for Flood Hazard Assessment. Spatial Modeling in GIS and R for Earth and Environmental Sciences, 391–410. doi:10.1016/b978-0-12-815226-3.00017-x.

Weng, Q. (2001). Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environmental Management, 28(6), 737–748. doi:10.1007/s002670010258.

Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., & Villeneuve, J.-P. (2001). Distributed Watershed Model Compatible with Remote Sensing and GIS Data. I: Description of Model. Journal of Hydrologic Engineering, 6(2), 91–99. doi:10.1061/(asce)1084-0699(2001)6:2(91).

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2002). Soil and Water Assessment Tool–User’s Manual 2002, TWRI Report TR-192, Texas, United States.

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–430. doi:10.1016/j.jhydrol.2006.09.014.

Chalkias, C., Stathopoulos, N., Kalogeropoulos, K., & Karymbalis, E. (2016). Applied Hydrological Modeling with the Use of Geoinformatics: Theory and Practice. Empirical Modeling and Its Applications. doi:10.5772/62824.

Amengual, A., Romero, R., Gómez, M., Martín, A., & Alonso, S. (2007). A hydrometeorological modeling study of a flash-flood event over Catalonia, Spain. Journal of Hydrometeorology, 8(3), 282–303. doi:10.1175/JHM577.1.

Ranaee, E., Mahmoodian, M., & Quchani, S. R. (2009). The combination of HEC-Geo-HMS, HEC-HMS and MIKE11 software utilize in a two branches river flood routing modeling. 2nd International Conference on Environmental and Computer Science, ICECS 2009, 317–321. doi:10.1109/ICECS.2009.62.

Gül, G. O., Harmancioǧlu, N., & Gül, A. (2010). A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures. Natural Hazards, 54(2), 245–260. doi:10.1007/s11069-009-9464-2.

Popescu, I., Jonoski, A., van Andel, S. J., Onyari, E., & Quiroga, V. G. M. (2010). Integrated modelling for flood risk mitigation in Romania: Case study of the Timis-Bega River basin. International Journal of River Basin Management, 8(3–4), 269–280. doi:10.1080/15715124.2010.512550.

Mendes, J., & Maia, R. (2016). Hydrologic Modelling Calibration for Operational Flood Forecasting. Water Resources Management, 30(15), 5671–5685. doi:10.1007/s11269-016-1509-1.

Al-Zahrani, M., Al-Areeq, A., & Sharif, H. O. (2017). Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomatics, Natural Hazards and Risk, 8(2), 672–688. doi:10.1080/19475705.2016.1255668.

Azam, M., Kim, H. S., & Maeng, S. J. (2017). Development of flood alert application in Mushim stream watershed Korea. International Journal of Disaster Risk Reduction, 21, 11–26. doi:10.1016/j.ijdrr.2016.11.008.

Elmoustafa, A. M., Saad, N. Y., & Fattouh, E. M. (2020). Defining the degree of flood hazard using a hydrodynamic approach, a case study: Wind turbines field at west of Suez Gulf. Ain Shams Engineering Journal, 11(3), 741–749. doi:10.1016/j.asej.2019.12.005.

Guduru, J. U., Jilo, N. B., Rabba, Z. A., & Namara, W. G. (2023). Rainfall-runoff modeling using HEC-HMS model for Meki River watershed, rift valley basin, Ethiopia. Journal of African Earth Sciences, 197. doi:10.1016/j.jafrearsci.2022.104743.

Juma, B., Olang, L. O., Hassan, M. A., Mulligan, J., & Shiundu, P. M. (2022). Simulation of flood peak discharges and volumes for flood risk management in the ungauged urban informal settlement of Kibera, Kenya. Physics and Chemistry of the Earth, 128. doi:10.1016/j.pce.2022.103236.

Kalinina, A., Spada, M., Vetsch, D. F., Marelli, S., Whealton, C., Burgherr, P., & Sudret, B. (2020). Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks. Energies, 13(14). doi:10.3390/en13143685.

Kumari, N., Srivastava, A., Sahoo, B., Raghuwanshi, N. S., & Bretreger, D. (2021). Identification of Suitable Hydrological Models for Streamflow Assessment in the Kangsabati River Basin, India, by Using Different Model Selection Scores. Natural Resources Research, 30(6), 4187–4205. doi:10.1007/s11053-021-09919-0.

Ben Khélifa, W., & Mosbahi, M. (2022). Modeling of rainfall-runoff process using HEC-HMS model for an urban ungauged watershed in Tunisia. Modeling Earth Systems and Environment, 8(2), 1749–1758. doi:10.1007/s40808-021-01177-6.

Puerto Princesa City Government (2022). Princesa City, Comprehensive Land Use Plan City of Puerto Princesa. Puerto Princesa City Government, Puerto Princesa, Philippines.

Quijano, I. P., Valenzuela, J., Carredo, R. S., Patiño, C., & Sinogaya, J. (2015). Vulnerability assessment of government buildings in sagay city through flood modeling and mobile GIS. 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia (ACRS 2015), 19-23 October, 2015, Quezon City, Philippines.

Schab, G. D., Fangmeier, D. D., Elliot, W. J. & Frevert, R. K. (1976). Soil and water conservation engineering. Eos, Transactions American Geophysical Union, 57(10), 708-711.

Scharffenberg, W. (2016). Hydrologic Modeling System HEC-HMS User's Manual. U.S. Army Corps of Engineers - Hydrologic Engineering Center, davis, United States.

Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS model for flow simulation in the Lake Tana Basin: The case of Gilgel Abay Catchment, upper Blue Nile Basin, Ethiopia. Hydrology, 6(1). doi:10.3390/hydrology6010019.

Lal, M., Mishra, S. K., Pandey, A., Pandey, R. P., Meena, P. K., Chaudhary, A., Jha, R. K., Shreevastava, A. K., & Kumar, Y. (2017). Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots. Hydrogeology Journal, 25(1), 151–167. doi:10.1007/s10040-016-1460-5.

Ranjan, S., & Singh, V. (2022). HEC-HMS based rainfall-runoff model for Punpun river basin. Water Practice and Technology, 17(5), 986–1001. doi:10.2166/wpt.2022.033.

Jourgholami, M., Karami, S., Tavankar, F., Lo Monaco, A., & Picchio, R. (2021). Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests, 12(1), 1–19. doi:10.3390/f12010049.

Gunathilake, G., Panditharathne, P., Gunathilake, A. S., & Warakagoda, N. D. (2019). Application of HEC-HMS Model on Event-Based Simulations in the Seethawaka Ganga River, Sri Lanka. Scholar Journal of Applied Science and Research, 2(9), 32–40. www.innovationinfo.org

Suprayogi, S., Rifai, & Latifah, R. (2021). HEC-HMS Model for Urban Flood Analysis in Belik River, Yogyakarta, Indonesia. ASEAN Journal on Science and Technology for Development, 38(1), 15–20. doi:10.29037/ajstd.643.

Hamdan, A. N. A., Almuktar, S., & Scholz, M. (2021). Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim river catchment, northern Iraq. Hydrology, 8(2). doi:10.3390/hydrology8020058.

Thu, K. C. M., Zin, W. W., & Khine, E. E. (2019). Simulation of rainfall-runoff process using HEC-HMS model for Chindwin River Basin. Proceedings of National Conference of Science and Engineering, 27-28 June, 2019, Yangon, Myanmar.

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. doi:10.13031/2013.23153.

Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1996). Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology, 181(1–4), 23–48. doi:10.1016/0022-1694(95)02918-4.

Gan, T. Y., & Biftu, G. F. (1996). Automatic calibration of conceptual rainfall-runoff models: Optimization algorithms, catchment conditions, and model structure. Water Resources Research, 32(12), 3513–3524. doi:10.1029/95WR02195.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-017


  • There are currently no refbacks.

Copyright (c) 2023 Jennifer Collado Cacal, Victor Czar Austria, Evelyn Buque Taboada

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.