Calibration and Validation of CN Values for Watershed Hydrological Response
Downloads
Doi: 10.28991/CEJ-2023-09-01-06
Full Text: PDF
Downloads
[2] Tong, S. T. Y., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Applied Geography, 32(2), 477–489. doi:10.1016/j.apgeog.2011.06.014.
[3] Hasan Tanim, A., & Goharian, E. (2021). Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff interactions in urban coastal flooding. Journal of Hydrology, 595(125670). doi:10.1016/j.jhydrol.2020.125670.
[4] Al-Ansari, N. A. (2013). Management of Water Resources in Iraq: Perspectives and Prognoses. Engineering, 05(08), 667–684. doi:10.4236/eng.2013.58080.
[5] Rahi, K. A., Al-Madhhachi, A.-S. T., & Al-Hussaini, S. N. (2019). Assessment of Surface Water Resources of Eastern Iraq. Hydrology, 6(3), 57. doi:10.3390/hydrology6030057.
[6] Jia, Y., Zhao, H., Niu, C., Jiang, Y., Gan, H., Xing, Z., Zhao, X., & Zhao, Z. (2009). A Web GIS-based system for rainfall-runoff prediction and real-time water resources assessment for Beijing. Computers and Geosciences, 35(7), 1517–1528. doi:10.1016/j.cageo.2008.10.004.
[7] Halwatura, D., & Najim, M. M. M. (2013). Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling and Software, 46, 155–162. doi:10.1016/j.envsoft.2013.03.006.
[8] Castro, C. V., & Maidment, D. R. (2020). GIS preprocessing for rapid initialization of HEC-HMS hydrological basin models using web-based data services. Environmental Modelling and Software, 130(104732). doi:10.1016/j.envsoft.2020.104732.
[9] Hoogestraat, G. K. (2011). Flood hydrology and dam-breach hydraulic analyses of four reservoirs in the Black Hills, South Dakota. U.S. Geological Survey Scientific Investigations Report 2011–5011, Reston, United States.
[10] Meng, L., Zhou, Y., Gu, L., Richardson, A. D., Peñuelas, J., Fu, Y., Wang, Y., Asrar, G. R., De Boeck, H. J., Mao, J., Zhang, Y., & Wang, Z. (2021). Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming. Global Change Biology, 27(12), 2914–2927. doi:10.1111/gcb.15575.
[11] Olayinka, D. N., & Irivbogbe, H. E. (2017). Estimation of Hydrological Outputs using HEC-HMS and GIS. Nigerian Journal of Environmental Sciences and Technology, 1(2), 390–402. doi:10.36263/nijest.2017.02.0054.
[12] Barbosa, J. H. S., Fernandes, A., Lima, A., & Assis, L. (2019). The influence of spatial discretization on HEC-HMS modelling: a case study. International Journal of Hydrology, 3(5), 442–449. doi:10.15406/ijh.2019.03.00209.
[13] Martin, O., Rugumayo, A., & Ovcharovichova, J. (2012). Application of HEC-HMS/RAS and GIS tools in flood modeling: A case study for river Sironko–Uganda. Global Journal of Engineering Design & Technology, 1(2), 19-31.
[14] Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. MDPI, Hydrology, 6(1), 1-21. doi:10.3390/hydrology6010021.
[15] Tahmasbinejad, H., Feyzolahpour, M., Mumipour, M., & Zakerhoseini, F. (2012). Rainfall-runoff simulation and modeling of Karun River using HEC-RAS and HEC-HMS models, Izeh District, Iran. Journal of Applied Sciences, 12(18), 1900–1908. doi:10.3923/jas.2012.1900.1908.
[16] Pratama, H. A., Ikhsan, J., & Apip, A. (2021). Prediksi Debit Aliran Masuk Ke Telaga Menjer Menggunakan Persamaan Neraca Air Dan Pemodelan Hec-Hms. Jurnal Teknik Hidraulik, 12(2), 119–130. doi:10.32679/jth.v12i2.655. (In Indonesian).
[17] Rizal, N. S., Ahmad, H. H., Iqbal, K., & Salim, N. (2022). Kalibrasi Parameter Hidrologi Daerah Aliran Sungai Bentuk Radial Dengan Aplikasi Hec-Hms. Jurnal Rekayasa Infrastruktur Hexagon, 6(2), 82–88. doi:10.32528/hgn.v6i2.6598. (In Indonesian).
[18] Hamdan, A. N. A., Almuktar, S., & Scholz, M. (2021). Rainfall-runoff modeling using the HEC-HMS model for the Al-adhaim river catchment, northern iraq. Hydrology, 8(2), 1–58. doi:10.3390/hydrology8020058.
[19] Ouédraogo, W. A. A., Raude, J. M., & Gathenya, J. M. (2018). Continuous modeling of the Mkurumudzi River catchment in Kenya using the HEC-HMS conceptual model: Calibration, validation, model performance evaluation and sensitivity analysis. Hydrology, 5(3). doi:10.3390/hydrology5030044.
[20] Herath, M. H. B. C. W., & Wijesekera, N. T. S. (2021). Evaluation of HEC-HMS Model for Water Resources Management in Maha Oya Basin in Sri Lanka. Engineer: Journal of the Institution of Engineers, Sri Lanka, 54(2), 45. doi:10.4038/engineer.v54i2.7441.
[21] CSO (2022). The Central Statistical Organization of Iraq, Environment Statistics, Bagdad, Iraq. Available online: http://cosit.gov.iq/en/ (accessed on June 2022).
[22] USGS (2022). Earth explorer: United States Geological Survey Available online: https://earthexplorer.usgs.gov (accessed on May 2022).
[23] Mhaina, A. S. (2017). Modeling suspended sediment load using SWAT model in data scarce area-Iraq (Al-Adhaim Watershed as a Case Study). Master Thesis, University of Technology, Baghdad, Iraq.
[24] Yusop, Z., Chan, C. H., & Katimon, A. (2007). Runoff characteristics and application of HEC-HMS for modelling storm flow hydrograph in an oil palm catchment. Water Science and Technology, 56(8), 41–48. doi:10.2166/wst.2007.690.
[25] Azam, M., Kim, H. S., & Maeng, S. J. (2017). Development of flood alert application in Mushim stream watershed Korea. International Journal of Disaster Risk Reduction, 21, 11–26. doi:10.1016/j.ijdrr.2016.11.008.
[26] Birkhead, A. L., & James, C. S. (2002). Muskingum river routing with dynamic bank storage. Journal of Hydrology, 264(1–4), 113–132. doi:10.1016/S0022-1694(02)00068-9.
[27] Manoj, N., Kurian, C., & Sudheer, K. (2016). Development of a flood forecasting model using HEC-HMS. Proceedings of the National Conference on Water Resources & Flood Management, National Conference on Water Resources & Flood Management with special reference to Flood Modelling, 14-15 October, 2016, Sardar Vallabhbhai National Institute of Technology, Surat, India.
[28] Rahman, K. U., Balkhair, K. S., Almazroui, M., & Masood, A. (2017). Sub-catchments flow losses computation using Muskingum–Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi Arabia. Modeling Earth Systems and Environment, 3(1), 1-9. doi:10.1007/s40808-017-0268-1.
[29] Oleyiblo, J. O., & Li, Z. J. (2010). Application of HEC-HMS for flood forecasting in Misai and Wan'an catchments in China. Water Science and Engineering, 3(1), 14–22. doi:10.3882/j.issn.1674-2370.2010.01.002.
[30] Kang, X., Niu, Y., Yu, H., Gou, P., Hou, Q., Lu, X., & Wu, Y. (2022). Effect of rainfall-runoff process on sources and transformations of nitrate using a combined approach of dual isotopes, hydrochemical and Bayesian model in the Dagang River basin. Science of the Total Environment, 837, 155674. doi:10.1016/j.scitotenv.2022.155674.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.