Calibration and Validation of CN Values for Watershed Hydrological Response

Nanang S. Rizal, Iskandar Umarie, Kukuh Munandar, Ari Eko Wardoyo


The amount of rainfall can be used to estimate the runoff that enters a reservoir. Runoff is influenced by land use, and soil type greatly affects the amount of runoff that will occur. This study discusses the development of a hydrological model with the application of the Hydrologic Engineering Center (HEC-HMS) in the Karangmumus watershed using soil data that has been verified in the field and divided into soil zones based on soil permeability testing in the laboratory. With the help of Geographic Information System (GIS) and Geospatial Hydrological Model (HEC-GeoHMS) applications, it is possible to identify the flow of the Karangmumus watershed and the Lempake Dam in Kalimantan by simulating the rain runoff process. The hydrological model was developed in the HEC-HMS by recording daily rainfall events from 2009 to 2019. With a daily period, then, the zoning soil type data was entered based on the results of soil permeability testing with the help of the application of the soil conservation curve method (SCS-CN), then discharge transformation, and calculation of water loss, including routing with Muskingum and SCS-Hydrograph applications. Based on the distribution of the CN value, the theoretical runoff is calculated and then calibrated with the observed discharge in 2017 and 2018, and then validated with the observed discharge in 2019, showing good results with a coefficient of determination between 0.89 to 0.92.


Doi: 10.28991/CEJ-2023-09-01-06

Full Text: PDF


Hydrological Models; HEC-HMS; Land Permeability; Karangmumus River; Rainfall/Runoff.


Arnell, N. W., van Vuuren, D. P., & Isaac, M. (2011). The implications of climate policy for the impacts of climate change on global water resources. Global Environmental Change, 21(2), 592–603. doi:10.1016/j.gloenvcha.2011.01.015.

Tong, S. T. Y., Sun, Y., Ranatunga, T., He, J., & Yang, Y. J. (2012). Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Applied Geography, 32(2), 477–489. doi:10.1016/j.apgeog.2011.06.014.

Hasan Tanim, A., & Goharian, E. (2021). Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff interactions in urban coastal flooding. Journal of Hydrology, 595(125670). doi:10.1016/j.jhydrol.2020.125670.

Al-Ansari, N. A. (2013). Management of Water Resources in Iraq: Perspectives and Prognoses. Engineering, 05(08), 667–684. doi:10.4236/eng.2013.58080.

Rahi, K. A., Al-Madhhachi, A.-S. T., & Al-Hussaini, S. N. (2019). Assessment of Surface Water Resources of Eastern Iraq. Hydrology, 6(3), 57. doi:10.3390/hydrology6030057.

Jia, Y., Zhao, H., Niu, C., Jiang, Y., Gan, H., Xing, Z., Zhao, X., & Zhao, Z. (2009). A Web GIS-based system for rainfall-runoff prediction and real-time water resources assessment for Beijing. Computers and Geosciences, 35(7), 1517–1528. doi:10.1016/j.cageo.2008.10.004.

Halwatura, D., & Najim, M. M. M. (2013). Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modelling and Software, 46, 155–162. doi:10.1016/j.envsoft.2013.03.006.

Castro, C. V., & Maidment, D. R. (2020). GIS preprocessing for rapid initialization of HEC-HMS hydrological basin models using web-based data services. Environmental Modelling and Software, 130(104732). doi:10.1016/j.envsoft.2020.104732.

Hoogestraat, G. K. (2011). Flood hydrology and dam-breach hydraulic analyses of four reservoirs in the Black Hills, South Dakota. U.S. Geological Survey Scientific Investigations Report 2011–5011, Reston, United States.

Meng, L., Zhou, Y., Gu, L., Richardson, A. D., Peñuelas, J., Fu, Y., Wang, Y., Asrar, G. R., De Boeck, H. J., Mao, J., Zhang, Y., & Wang, Z. (2021). Photoperiod decelerates the advance of spring phenology of six deciduous tree species under climate warming. Global Change Biology, 27(12), 2914–2927. doi:10.1111/gcb.15575.

Olayinka, D. N., & Irivbogbe, H. E. (2017). Estimation of Hydrological Outputs using HEC-HMS and GIS. Nigerian Journal of Environmental Sciences and Technology, 1(2), 390–402. doi:10.36263/nijest.2017.02.0054.

Barbosa, J. H. S., Fernandes, A., Lima, A., & Assis, L. (2019). The influence of spatial discretization on HEC-HMS modelling: a case study. International Journal of Hydrology, 3(5), 442–449. doi:10.15406/ijh.2019.03.00209.

Martin, O., Rugumayo, A., & Ovcharovichova, J. (2012). Application of HEC-HMS/RAS and GIS tools in flood modeling: A case study for river Sironko–Uganda. Global Journal of Engineering Design & Technology, 1(2), 19-31.

Tassew, B. G., Belete, M. A., & Miegel, K. (2019). Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. MDPI, Hydrology, 6(1), 1-21. doi:10.3390/hydrology6010021.

Tahmasbinejad, H., Feyzolahpour, M., Mumipour, M., & Zakerhoseini, F. (2012). Rainfall-runoff simulation and modeling of Karun River using HEC-RAS and HEC-HMS models, Izeh District, Iran. Journal of Applied Sciences, 12(18), 1900–1908. doi:10.3923/jas.2012.1900.1908.

Pratama, H. A., Ikhsan, J., & Apip, A. (2021). Prediksi Debit Aliran Masuk Ke Telaga Menjer Menggunakan Persamaan Neraca Air Dan Pemodelan Hec-Hms. Jurnal Teknik Hidraulik, 12(2), 119–130. doi:10.32679/jth.v12i2.655. (In Indonesian).

Rizal, N. S., Ahmad, H. H., Iqbal, K., & Salim, N. (2022). Kalibrasi Parameter Hidrologi Daerah Aliran Sungai Bentuk Radial Dengan Aplikasi Hec-Hms. Jurnal Rekayasa Infrastruktur Hexagon, 6(2), 82–88. doi:10.32528/hgn.v6i2.6598. (In Indonesian).

Hamdan, A. N. A., Almuktar, S., & Scholz, M. (2021). Rainfall-runoff modeling using the HEC-HMS model for the Al-adhaim river catchment, northern iraq. Hydrology, 8(2), 1–58. doi:10.3390/hydrology8020058.

Ouédraogo, W. A. A., Raude, J. M., & Gathenya, J. M. (2018). Continuous modeling of the Mkurumudzi River catchment in Kenya using the HEC-HMS conceptual model: Calibration, validation, model performance evaluation and sensitivity analysis. Hydrology, 5(3). doi:10.3390/hydrology5030044.

Herath, M. H. B. C. W., & Wijesekera, N. T. S. (2021). Evaluation of HEC-HMS Model for Water Resources Management in Maha Oya Basin in Sri Lanka. Engineer: Journal of the Institution of Engineers, Sri Lanka, 54(2), 45. doi:10.4038/engineer.v54i2.7441.

CSO (2022). The Central Statistical Organization of Iraq, Environment Statistics, Bagdad, Iraq. Available online: (accessed on June 2022).

USGS (2022). Earth explorer: United States Geological Survey Available online: (accessed on May 2022).

Mhaina, A. S. (2017). Modeling suspended sediment load using SWAT model in data scarce area-Iraq (Al-Adhaim Watershed as a Case Study). Master Thesis, University of Technology, Baghdad, Iraq.

Yusop, Z., Chan, C. H., & Katimon, A. (2007). Runoff characteristics and application of HEC-HMS for modelling storm flow hydrograph in an oil palm catchment. Water Science and Technology, 56(8), 41–48. doi:10.2166/wst.2007.690.

Azam, M., Kim, H. S., & Maeng, S. J. (2017). Development of flood alert application in Mushim stream watershed Korea. International Journal of Disaster Risk Reduction, 21, 11–26. doi:10.1016/j.ijdrr.2016.11.008.

Birkhead, A. L., & James, C. S. (2002). Muskingum river routing with dynamic bank storage. Journal of Hydrology, 264(1–4), 113–132. doi:10.1016/S0022-1694(02)00068-9.

Manoj, N., Kurian, C., & Sudheer, K. (2016). Development of a flood forecasting model using HEC-HMS. Proceedings of the National Conference on Water Resources & Flood Management, National Conference on Water Resources & Flood Management with special reference to Flood Modelling, 14-15 October, 2016, Sardar Vallabhbhai National Institute of Technology, Surat, India.

Rahman, K. U., Balkhair, K. S., Almazroui, M., & Masood, A. (2017). Sub-catchments flow losses computation using Muskingum–Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi Arabia. Modeling Earth Systems and Environment, 3(1), 1-9. doi:10.1007/s40808-017-0268-1.

Oleyiblo, J. O., & Li, Z. J. (2010). Application of HEC-HMS for flood forecasting in Misai and Wan’an catchments in China. Water Science and Engineering, 3(1), 14–22. doi:10.3882/j.issn.1674-2370.2010.01.002.

Kang, X., Niu, Y., Yu, H., Gou, P., Hou, Q., Lu, X., & Wu, Y. (2022). Effect of rainfall-runoff process on sources and transformations of nitrate using a combined approach of dual isotopes, hydrochemical and Bayesian model in the Dagang River basin. Science of the Total Environment, 837, 155674. doi:10.1016/j.scitotenv.2022.155674.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-06


  • There are currently no refbacks.

Copyright (c) 2023 nanang saiful rizal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.