Intelligent Control Methodology for Smart Highway Bridge Structures Using Optimal Replicator Dynamic Controller

Z. Momeni, A. Bagchi


Control algorithms are an essential part of effective semi-active vibration control systems used for the protection of large structures under dynamic loading. Adaptive control algorithms, which are data-driven methods, have recently been developed to replace model-based control algorithms, thus improving efficiency. The dynamic parameters of semi-actively controlled infrastructures will change after significant vibration loading. As a result, these structures require real-time, effective control actions in response to changing conditions, which classical controllers are unable to provide. To improve the efficiency of the semi-active controller, the optimal control algorithm was developed in this study. The algorithm is the integration of the replicator dynamics with an improved non-dominated sorting genetic algorithm (NSGA), which is NSGA-II. The optimal parameters of replicator dynamics (total resources, growth rate, and fitness function), which represent the behavior of the actuators, were obtained through a multi-objective optimization process. The new control system was then used to reduce the vibrations of the isolated highway bridge, which is equipped with semi-active control devices known as MR dampers. Moreover, the current study improved the performance of the structural control system with minimum energy consumption by assigning a specific growth rate to each control device. In order to reduce the vibrations of the highway bridge, the results show that the performance of the optimal replicator controller is better than the performance of the classical control algorithms.


Doi: 10.28991/CEJ-2023-09-01-01

Full Text: PDF


Replicator Dynamics; Game Theory; Data-Driven Control; Optimization; Optimal Control; Smart Structure.


Agrawal, A., Tan, P., Nagarajaiah, S., & Zhang, J. (2009). Benchmark structural control problem for a seismically excited highway bridge-part I: Phase I problem definition. Structural Control and Health Monitoring, 16(5), 509–529. doi:10.1002/stc.301.

Tan, P., & Agrawal, A. K. (2009). Benchmark structural control problem for a seismically excited highway bridge-Part II: Phase I Sample control designs. Structural Control and Health Monitoring, 16(5), 530–548. doi:10.1002/stc.300.

Nagarajaiah, S., Narasimhan, S., Agrawal, A., & Tan, P. (2009). Benchmark structural control problem for a seismically excited highway bridge-part III: Phase II sample controller for the fully base-isolated case. Structural Control and Health Monitoring, 16(5), 549–563. doi:10.1002/stc.293.

Javadinasab Hormozabad, S., & Gutierrez Soto, M. (2021). Load balancing and neural dynamic model to optimize replicator dynamics controllers for vibration reduction of highway bridge structures. Engineering Applications of Artificial Intelligence, 99, 104138. doi:10.1016/j.engappai.2020.104138.

Camara, A. (2018). Seismic behavior of cable‒stayed bridges: a review. MOJ Civil Engineering, 4(3), 161–169. doi:10.15406/mojce.2018.04.00115.

Dolce, M., Cardone, D., Ponzo, F. C., & Valente, C. (2005). Shaking table tests on reinforced concrete frames without and with passive control systems. Earthquake Engineering and Structural Dynamics, 34(14), 1687–1717. doi:10.1002/eqe.501.

Soong, T. T., & Costantinou, M. C. (Eds.). (2014). Passive and active structural vibration control in civil engineering. Springer, Vienna, Austria.

Chen, Z., Fang, H., Han, Z., & Sun, S. (2019). Influence of bridge-based designed TMD on running trains. JVC/Journal of Vibration and Control, 25(1), 182–193. doi:10.1177/1077546318773022.

Li, J., Zhang, H., Chen, S., & Zhu, D. (2020). Optimization and sensitivity of TMD parameters for mitigating bridge maximum vibration response under moving forces. Structures, 28, 512–520. doi:10.1016/j.istruc.2020.08.065.

Alizadeh, H., & Hosseni Lavassani, S. H. (2021). Flutter Control of Long Span Suspension Bridges in Time Domain Using Optimized TMD. International Journal of Steel Structures, 21(2), 731–742. doi:10.1007/s13296-021-00469-y.

Bharathi Priya C., & Gopalakrishnan, N. (2022). Emotional Learning based adaptive control algorithm for Semi-Active seismic control of structures. Materials Today: Proceedings, 65, 1703–1710. doi:10.1016/j.matpr.2022.04.714.

Kemerli, M., Şahin, Ö., Yazıcı, İ., Çağlar, N., & Engin, T. (2022). Comparison of discrete-time sliding mode control algorithms for seismic control of buildings with magnetorheological fluid dampers. JVC/Journal of Vibration and Control, 10775463211070062. doi:10.1177/10775463211070062.

Jian, L., Song, F., & Huang, Y. (2020). Research on Semiactive Control of Civil Engineering Structure Based on Neural Network. Wireless Communications and Mobile Computing, 2020. doi:10.1155/2020/8842031.

Javadinasab H., S., & Ghorbani-Tanha, A. K. (2020). Semi-active fuzzy control of Lali Cable-Stayed Bridge using MR dampers under seismic excitation. Frontiers of Structural and Civil Engineering, 14(3), 706–721. doi:10.1007/s11709-020-0612-9.

Bathaei, A., & Zahrai, S. M. (2022). Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control. Structural Engineering and Mechanics, 82(4), 445–458. doi:10.12989/sem.2022.82.4.445.

Saeed, M. U., Sun, Z., & Elias, S. (2022). Research developments in adaptive intelligent vibration control of smart civil structures. Journal of Low Frequency Noise Vibration and Active Control, 41(1), 292–329. doi:10.1177/14613484211032758.

Fisco, N. R., & Adeli, H. (2011). Smart structures: Part II - Hybrid control systems and control strategies. Scientia Iranica, 18(3 A), 285–295. doi:10.1016/j.scient.2011.05.035.

Alkhatib, R., & Golnaraghi, M. F. (2003). Active structural vibration control: A review. Shock and Vibration Digest, 35(5), 367–383. doi:10.1177/05831024030355002.

Gutierrez Soto, M., & Adeli, H. (2017). Recent advances in control algorithms for smart structures and machines. Expert Systems, 34(2), 12205. doi:10.1111/exsy.12205.

Gutierrez Soto, M. (2018). Bio-inspired hybrid vibration control methodology for intelligent isolated bridge structures. Active and Passive Smart Structures and Integrated Systems XII. doi:10.1117/12.2300393.

Gutierrez Soto, M., & Adeli, H. (2018). Vibration control of smart base-isolated irregular buildings using neural dynamic optimization model and replicator dynamics. Engineering Structures, 156, 322–336. doi:10.1016/j.engstruct.2017.09.037.

Gutierrez Soto, M., & Adeli, H. (2017). Many-objective control optimization of high-rise building structures using replicator dynamics and neural dynamics model. Structural and Multidisciplinary Optimization, 56(6), 1521–1537. doi:10.1007/s00158-017-1835-9.

Soto, G., & Adeli, H. (2017). Multi-agent replicator controller for sustainable vibration control of smart structures mariantonieta. Journal of Vibroengineering, 19(6), 4300–4322. doi:10.21595/jve.2017.18924.

Gutierrez Soto, M. (2017). Multi-agent Replicator Control Methodologies for Sustainable Vibration Control of Smart Building and Bridge Structures. Ph.D. Thesis, Ohio State University, Columbus, United States.

Gutierrez Soto, M., & Adeli, H. (2019). Semi-active vibration control of smart isolated highway bridge structures using replicator dynamics. Engineering Structures, 186, 536–552. doi:10.1016/j.engstruct.2019.02.031.

Ramezani, M., Bathaei, A., & Zahrai, S. M. (2019). Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties. Smart Structures and Systems, 23(2), 155–171. doi:10.12989/sss.2019.23.2.155.

Bathaei, A., & Zahrai, S. M. (2022). Improving semi-active vibration control of an 11-story structure with non-linear behavior and floating fuzzy logic algorithm. Structures, 39, 132–146. doi:10.1016/j.istruc.2022.03.022.

Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681–704. doi:10.1016/

Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499–507. doi:10.1016/S0965-9978(00)00110-1.

Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering design. Evolutionary algorithms in engineering and computer science, 2, 135-161.

Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221–248. doi:10.1162/evco.1994.2.3.221.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. doi:10.1109/4235.996017.

Quijano, N., Ocampo-Martinez, C., Barreiro-Gomez, J., Obando, G., Pantoja, A., & Mojica-Nava, E. (2017). The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory. IEEE Control Systems, 37(1), 70–97. doi:10.1109/MCS.2016.2621479.

Song, G., Sethi, V., & Li, H. N. (2006). Vibration control of civil structures using piezoceramic smart materials: A review. Engineering Structures, 28(11), 1513-1524. doi:10.1016/j.engstruct.2006.02.002.

Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1–16. doi:10.1080/23311916.2018.1502242.

Yusoff, Y., Ngadiman, M. S., & Zain, A. M. (2011). Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Engineering, 15, 3978–3983. doi:10.1016/j.proeng.2011.08.745.

Makris, N., & Zhang, J. (2004). Seismic response analysis of a highway overcrossing equipped with elastomeric bearings and fluid dampers. Journal of Structural Engineering, 130(6), 830-845. doi:10.1061/(asce)0733-9445(2004)130:6(830).

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-01


  • There are currently no refbacks.

Copyright (c) 2023 zahrasadat momeni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.