Intelligent Control Methodology for Smart Highway Bridge Structures Using Optimal Replicator Dynamic Controller
Abstract
Doi: 10.28991/CEJ-2023-09-01-01
Full Text: PDF
Keywords
References
Agrawal, A., Tan, P., Nagarajaiah, S., & Zhang, J. (2009). Benchmark structural control problem for a seismically excited highway bridge-part I: Phase I problem definition. Structural Control and Health Monitoring, 16(5), 509–529. doi:10.1002/stc.301.
Tan, P., & Agrawal, A. K. (2009). Benchmark structural control problem for a seismically excited highway bridge-Part II: Phase I Sample control designs. Structural Control and Health Monitoring, 16(5), 530–548. doi:10.1002/stc.300.
Nagarajaiah, S., Narasimhan, S., Agrawal, A., & Tan, P. (2009). Benchmark structural control problem for a seismically excited highway bridge-part III: Phase II sample controller for the fully base-isolated case. Structural Control and Health Monitoring, 16(5), 549–563. doi:10.1002/stc.293.
Javadinasab Hormozabad, S., & Gutierrez Soto, M. (2021). Load balancing and neural dynamic model to optimize replicator dynamics controllers for vibration reduction of highway bridge structures. Engineering Applications of Artificial Intelligence, 99, 104138. doi:10.1016/j.engappai.2020.104138.
Camara, A. (2018). Seismic behavior of cable‒stayed bridges: a review. MOJ Civil Engineering, 4(3), 161–169. doi:10.15406/mojce.2018.04.00115.
Dolce, M., Cardone, D., Ponzo, F. C., & Valente, C. (2005). Shaking table tests on reinforced concrete frames without and with passive control systems. Earthquake Engineering and Structural Dynamics, 34(14), 1687–1717. doi:10.1002/eqe.501.
Soong, T. T., & Costantinou, M. C. (Eds.). (2014). Passive and active structural vibration control in civil engineering. Springer, Vienna, Austria.
Chen, Z., Fang, H., Han, Z., & Sun, S. (2019). Influence of bridge-based designed TMD on running trains. JVC/Journal of Vibration and Control, 25(1), 182–193. doi:10.1177/1077546318773022.
Li, J., Zhang, H., Chen, S., & Zhu, D. (2020). Optimization and sensitivity of TMD parameters for mitigating bridge maximum vibration response under moving forces. Structures, 28, 512–520. doi:10.1016/j.istruc.2020.08.065.
Alizadeh, H., & Hosseni Lavassani, S. H. (2021). Flutter Control of Long Span Suspension Bridges in Time Domain Using Optimized TMD. International Journal of Steel Structures, 21(2), 731–742. doi:10.1007/s13296-021-00469-y.
Bharathi Priya C., & Gopalakrishnan, N. (2022). Emotional Learning based adaptive control algorithm for Semi-Active seismic control of structures. Materials Today: Proceedings, 65, 1703–1710. doi:10.1016/j.matpr.2022.04.714.
Kemerli, M., Şahin, Ö., Yazıcı, İ., Çağlar, N., & Engin, T. (2022). Comparison of discrete-time sliding mode control algorithms for seismic control of buildings with magnetorheological fluid dampers. JVC/Journal of Vibration and Control, 10775463211070062. doi:10.1177/10775463211070062.
Jian, L., Song, F., & Huang, Y. (2020). Research on Semiactive Control of Civil Engineering Structure Based on Neural Network. Wireless Communications and Mobile Computing, 2020. doi:10.1155/2020/8842031.
Javadinasab H., S., & Ghorbani-Tanha, A. K. (2020). Semi-active fuzzy control of Lali Cable-Stayed Bridge using MR dampers under seismic excitation. Frontiers of Structural and Civil Engineering, 14(3), 706–721. doi:10.1007/s11709-020-0612-9.
Bathaei, A., & Zahrai, S. M. (2022). Compensating time delay in semi-active control of a SDOF structure with MR damper using predictive control. Structural Engineering and Mechanics, 82(4), 445–458. doi:10.12989/sem.2022.82.4.445.
Saeed, M. U., Sun, Z., & Elias, S. (2022). Research developments in adaptive intelligent vibration control of smart civil structures. Journal of Low Frequency Noise Vibration and Active Control, 41(1), 292–329. doi:10.1177/14613484211032758.
Fisco, N. R., & Adeli, H. (2011). Smart structures: Part II - Hybrid control systems and control strategies. Scientia Iranica, 18(3 A), 285–295. doi:10.1016/j.scient.2011.05.035.
Alkhatib, R., & Golnaraghi, M. F. (2003). Active structural vibration control: A review. Shock and Vibration Digest, 35(5), 367–383. doi:10.1177/05831024030355002.
Gutierrez Soto, M., & Adeli, H. (2017). Recent advances in control algorithms for smart structures and machines. Expert Systems, 34(2), 12205. doi:10.1111/exsy.12205.
Gutierrez Soto, M. (2018). Bio-inspired hybrid vibration control methodology for intelligent isolated bridge structures. Active and Passive Smart Structures and Integrated Systems XII. doi:10.1117/12.2300393.
Gutierrez Soto, M., & Adeli, H. (2018). Vibration control of smart base-isolated irregular buildings using neural dynamic optimization model and replicator dynamics. Engineering Structures, 156, 322–336. doi:10.1016/j.engstruct.2017.09.037.
Gutierrez Soto, M., & Adeli, H. (2017). Many-objective control optimization of high-rise building structures using replicator dynamics and neural dynamics model. Structural and Multidisciplinary Optimization, 56(6), 1521–1537. doi:10.1007/s00158-017-1835-9.
Soto, G., & Adeli, H. (2017). Multi-agent replicator controller for sustainable vibration control of smart structures mariantonieta. Journal of Vibroengineering, 19(6), 4300–4322. doi:10.21595/jve.2017.18924.
Gutierrez Soto, M. (2017). Multi-agent Replicator Control Methodologies for Sustainable Vibration Control of Smart Building and Bridge Structures. Ph.D. Thesis, Ohio State University, Columbus, United States.
Gutierrez Soto, M., & Adeli, H. (2019). Semi-active vibration control of smart isolated highway bridge structures using replicator dynamics. Engineering Structures, 186, 536–552. doi:10.1016/j.engstruct.2019.02.031.
Ramezani, M., Bathaei, A., & Zahrai, S. M. (2019). Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties. Smart Structures and Systems, 23(2), 155–171. doi:10.12989/sss.2019.23.2.155.
Bathaei, A., & Zahrai, S. M. (2022). Improving semi-active vibration control of an 11-story structure with non-linear behavior and floating fuzzy logic algorithm. Structures, 39, 132–146. doi:10.1016/j.istruc.2022.03.022.
Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681–704. doi:10.1016/j.energy.2017.02.174.
Branke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499–507. doi:10.1016/S0965-9978(00)00110-1.
Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering design. Evolutionary algorithms in engineering and computer science, 2, 135-161.
Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221–248. doi:10.1162/evco.1994.2.3.221.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. doi:10.1109/4235.996017.
Quijano, N., Ocampo-Martinez, C., Barreiro-Gomez, J., Obando, G., Pantoja, A., & Mojica-Nava, E. (2017). The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory. IEEE Control Systems, 37(1), 70–97. doi:10.1109/MCS.2016.2621479.
Song, G., Sethi, V., & Li, H. N. (2006). Vibration control of civil structures using piezoceramic smart materials: A review. Engineering Structures, 28(11), 1513-1524. doi:10.1016/j.engstruct.2006.02.002.
Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1–16. doi:10.1080/23311916.2018.1502242.
Yusoff, Y., Ngadiman, M. S., & Zain, A. M. (2011). Overview of NSGA-II for Optimizing Machining Process Parameters. Procedia Engineering, 15, 3978–3983. doi:10.1016/j.proeng.2011.08.745.
Makris, N., & Zhang, J. (2004). Seismic response analysis of a highway overcrossing equipped with elastomeric bearings and fluid dampers. Journal of Structural Engineering, 130(6), 830-845. doi:10.1061/(asce)0733-9445(2004)130:6(830).
DOI: 10.28991/CEJ-2023-09-01-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 zahrasadat momeni

This work is licensed under a Creative Commons Attribution 4.0 International License.